BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 33430990)

  • 1. ADMET evaluation in drug discovery. 20. Prediction of breast cancer resistance protein inhibition through machine learning.
    Jiang D; Lei T; Wang Z; Shen C; Cao D; Hou T
    J Cheminform; 2020 Mar; 12(1):16. PubMed ID: 33430990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ADMET Evaluation in Drug Discovery. Part 17: Development of Quantitative and Qualitative Prediction Models for Chemical-Induced Respiratory Toxicity.
    Lei T; Chen F; Liu H; Sun H; Kang Y; Li D; Li Y; Hou T
    Mol Pharm; 2017 Jul; 14(7):2407-2421. PubMed ID: 28595388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ADMET Evaluation in Drug Discovery. 18. Reliable Prediction of Chemical-Induced Urinary Tract Toxicity by Boosting Machine Learning Approaches.
    Lei T; Sun H; Kang Y; Zhu F; Liu H; Zhou W; Wang Z; Li D; Li Y; Hou T
    Mol Pharm; 2017 Nov; 14(11):3935-3953. PubMed ID: 29037046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational classification models for predicting the interaction of drugs with P-glycoprotein and breast cancer resistance protein.
    Erić S; Kalinić M; Ilić K; Zloh M
    SAR QSAR Environ Res; 2014; 25(12):939-66. PubMed ID: 25435255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ADMET Evaluation in Drug Discovery. 19. Reliable Prediction of Human Cytochrome P450 Inhibition Using Artificial Intelligence Approaches.
    Wu Z; Lei T; Shen C; Wang Z; Cao D; Hou T
    J Chem Inf Model; 2019 Nov; 59(11):4587-4601. PubMed ID: 31644282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets.
    Wu Z; Zhu M; Kang Y; Leung EL; Lei T; Shen C; Jiang D; Wang Z; Cao D; Hou T
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ensemble Machine Learning Approaches Based on Molecular Descriptors and Graph Convolutional Networks for Predicting the Efflux Activities of MDR1 and BCRP Transporters.
    Adachi A; Yamashita T; Kanaya S; Kosugi Y
    AAPS J; 2023 Sep; 25(5):88. PubMed ID: 37700207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of Breast Cancer Resistant Protein (BCRP) Inhibitors and Non-Inhibitors Using Machine Learning Approaches.
    Belekar V; Lingineni K; Garg P
    Comb Chem High Throughput Screen; 2015; 18(5):476-85. PubMed ID: 26004050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting Inhibitors for Multidrug Resistance Associated Protein-2 Transporter by Machine Learning Approach.
    Kharangarh S; Sandhu H; Tangadpalliwar S; Garg P
    Comb Chem High Throughput Screen; 2018; 21(8):557-566. PubMed ID: 30360705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico prediction of inhibition of promiscuous breast cancer resistance protein (BCRP/ABCG2).
    Ding YL; Shih YH; Tsai FY; Leong MK
    PLoS One; 2014; 9(3):e90689. PubMed ID: 24614353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of structural fingerprints for ABCG2 inhibition by using Monte Carlo optimization, Bayesian classification, and structural and physicochemical interpretation (SPCI) analysis.
    Ghosh K; Bhardwaj B; Amin SA; Jha T; Gayen S
    SAR QSAR Environ Res; 2020 Jun; 31(6):439-455. PubMed ID: 32539470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A prediction model of substrates and non-substrates of breast cancer resistance protein (BCRP) developed by GA-CG-SVM method.
    Zhong L; Ma CY; Zhang H; Yang LJ; Wan HL; Xie QQ; Li LL; Yang SY
    Comput Biol Med; 2011 Nov; 41(11):1006-13. PubMed ID: 21924412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeepStack-DTIs: Predicting Drug-Target Interactions Using LightGBM Feature Selection and Deep-Stacked Ensemble Classifier.
    Zhang Y; Jiang Z; Chen C; Wei Q; Gu H; Yu B
    Interdiscip Sci; 2022 Jun; 14(2):311-330. PubMed ID: 34731411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of FLT3 inhibitors and SAR analysis by machine learning methods.
    Zhao Y; Tian Y; Pang X; Li G; Shi S; Yan A
    Mol Divers; 2023 May; ():. PubMed ID: 37142889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovering the Active Ingredients of Medicine and Food Homologous Substances for Inhibiting the Cyclooxygenase-2 Metabolic Pathway by Machine Learning Algorithms.
    Tian Y; Zhang Z; Yan A
    Molecules; 2023 Sep; 28(19):. PubMed ID: 37836625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Comparison of the Prediction of the Unbound Brain-to-Plasma Partitioning Utilizing Machine Learning Approach and Mechanistic Neuropharmacokinetic Model.
    Kosugi Y; Mizuno K; Santos C; Sato S; Hosea N; Zientek M
    AAPS J; 2021 May; 23(4):72. PubMed ID: 34008121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selectivity profiling of BCRP versus P-gp inhibition: from automated collection of polypharmacology data to multi-label learning.
    Montanari F; Zdrazil B; Digles D; Ecker GF
    J Cheminform; 2016; 8():7. PubMed ID: 26855674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification models and SAR analysis on thromboxane A
    Ji Y; Li R; Tian Y; Chen G; Yan A
    SAR QSAR Environ Res; 2022 Jun; 33(6):429-462. PubMed ID: 35678125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure activity relationships and quantitative structure activity relationships for the flavonoid-mediated inhibition of breast cancer resistance protein.
    Zhang S; Yang X; Coburn RA; Morris ME
    Biochem Pharmacol; 2005 Aug; 70(4):627-39. PubMed ID: 15979586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.