These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 33430997)

  • 1. Comparison and improvement of the predictability and interpretability with ensemble learning models in QSPR applications.
    Chen CH; Tanaka K; Kotera M; Funatsu K
    J Cheminform; 2020 Mar; 12(1):19. PubMed ID: 33430997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Random Forest Approach to QSPR Study of Fluorescence Properties Combining Quantum Chemical Descriptors and Solvent Conditions.
    Chen CH; Tanaka K; Funatsu K
    J Fluoresc; 2018 Mar; 28(2):695-706. PubMed ID: 29680928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ensemble modeling with machine learning and deep learning to provide interpretable generalized rules for classifying CNS drugs with high prediction power.
    Yu TH; Su BH; Battalora LC; Liu S; Tseng YJ
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34530437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive ensemble in QSAR prediction for drug discovery.
    Kwon S; Bae H; Jo J; Yoon S
    BMC Bioinformatics; 2019 Oct; 20(1):521. PubMed ID: 31655545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the Predictive Performance and Interpretability of Random Forest and Linear Models on Benchmark Data Sets.
    Marchese Robinson RL; Palczewska A; Palczewski J; Kidley N
    J Chem Inf Model; 2017 Aug; 57(8):1773-1792. PubMed ID: 28715209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Building more accurate decision trees with the additive tree.
    Luna JM; Gennatas ED; Ungar LH; Eaton E; Diffenderfer ES; Jensen ST; Simone CB; Friedman JH; Solberg TD; Valdes G
    Proc Natl Acad Sci U S A; 2019 Oct; 116(40):19887-19893. PubMed ID: 31527280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Greedy and Linear Ensembles of Machine Learning Methods Outperform Single Approaches for QSPR Regression Problems.
    Kew W; Mitchell JB
    Mol Inform; 2015 Sep; 34(9):634-47. PubMed ID: 27490713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Random forest: a classification and regression tool for compound classification and QSAR modeling.
    Svetnik V; Liaw A; Tong C; Culberson JC; Sheridan RP; Feuston BP
    J Chem Inf Comput Sci; 2003; 43(6):1947-58. PubMed ID: 14632445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An ensemble model of QSAR tools for regulatory risk assessment.
    Pradeep P; Povinelli RJ; White S; Merrill SJ
    J Cheminform; 2016; 8():48. PubMed ID: 28316646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Random generalized linear model: a highly accurate and interpretable ensemble predictor.
    Song L; Langfelder P; Horvath S
    BMC Bioinformatics; 2013 Jan; 14():5. PubMed ID: 23323760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contemporary QSAR classifiers compared.
    Bruce CL; Melville JL; Pickett SD; Hirst JD
    J Chem Inf Model; 2007; 47(1):219-27. PubMed ID: 17238267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of Cavity Length Using an Interpretable Ensemble Learning Approach.
    Guo G; Li S; Liu Y; Cao Z; Deng Y
    Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36613022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ADMET evaluation in drug discovery. 20. Prediction of breast cancer resistance protein inhibition through machine learning.
    Jiang D; Lei T; Wang Z; Shen C; Cao D; Hou T
    J Cheminform; 2020 Mar; 12(1):16. PubMed ID: 33430990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. iForest: Interpreting Random Forests via Visual Analytics.
    Zhao X; Wu Y; Lee DL; Cui W
    IEEE Trans Vis Comput Graph; 2018 Sep; ():. PubMed ID: 30188822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of Random Forest Classifiers and Deep Convolutional Neural Networks for Classification and Biomolecular Modeling of Cancer Driver Mutations.
    Agajanian S; Oluyemi O; Verkhivker GM
    Front Mol Biosci; 2019; 6():44. PubMed ID: 31245384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forecasting Corn Yield With Machine Learning Ensembles.
    Shahhosseini M; Hu G; Archontoulis SV
    Front Plant Sci; 2020; 11():1120. PubMed ID: 32849688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Universal Approach for Structural Interpretation of QSAR/QSPR Models.
    Polishchuk PG; Kuz'min VE; Artemenko AG; Muratov EN
    Mol Inform; 2013 Oct; 32(9-10):843-53. PubMed ID: 27480236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An interpretable stacking ensemble learning framework based on multi-dimensional data for real-time prediction of drug concentration: The example of olanzapine.
    Zhu X; Hu J; Xiao T; Huang S; Wen Y; Shang D
    Front Pharmacol; 2022; 13():975855. PubMed ID: 36238557
    [No Abstract]   [Full Text] [Related]  

  • 19. Boosting: an ensemble learning tool for compound classification and QSAR modeling.
    Svetnik V; Wang T; Tong C; Liaw A; Sheridan RP; Song Q
    J Chem Inf Model; 2005; 45(3):786-99. PubMed ID: 15921468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ADMET Evaluation in Drug Discovery. 18. Reliable Prediction of Chemical-Induced Urinary Tract Toxicity by Boosting Machine Learning Approaches.
    Lei T; Sun H; Kang Y; Zhu F; Liu H; Zhou W; Wang Z; Li D; Li Y; Hou T
    Mol Pharm; 2017 Nov; 14(11):3935-3953. PubMed ID: 29037046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.