These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 33431016)

  • 1. QSAR-derived affinity fingerprints (part 2): modeling performance for potency prediction.
    Cortés-Ciriano I; Škuta C; Bender A; Svozil D
    J Cheminform; 2020 Jun; 12(1):41. PubMed ID: 33431016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QSAR-derived affinity fingerprints (part 1): fingerprint construction and modeling performance for similarity searching, bioactivity classification and scaffold hopping.
    Škuta C; Cortés-Ciriano I; Dehaen W; Kříž P; van Westen GJP; Tetko IV; Bender A; Svozil D
    J Cheminform; 2020 May; 12(1):39. PubMed ID: 33431038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. KekuleScope: prediction of cancer cell line sensitivity and compound potency using convolutional neural networks trained on compound images.
    Cortés-Ciriano I; Bender A
    J Cheminform; 2019 Jun; 11(1):41. PubMed ID: 31218493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benchmarking the Predictive Power of Ligand Efficiency Indices in QSAR.
    Cortes-Ciriano I
    J Chem Inf Model; 2016 Aug; 56(8):1576-87. PubMed ID: 27399907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ChemBioSim: Enhancing Conformal Prediction of In Vivo Toxicity by Use of Predicted Bioactivities.
    Garcia de Lomana M; Morger A; Norinder U; Buesen R; Landsiedel R; Volkamer A; Kirchmair J; Mathea M
    J Chem Inf Model; 2021 Jul; 61(7):3255-3272. PubMed ID: 34153183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved Chemical Structure-Activity Modeling Through Data Augmentation.
    Cortes-Ciriano I; Bender A
    J Chem Inf Model; 2015 Dec; 55(12):2682-92. PubMed ID: 26619900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 4D-fingerprints, universal QSAR and QSPR descriptors.
    Senese CL; Duca J; Pan D; Hopfinger AJ; Tseng YJ
    J Chem Inf Comput Sci; 2004; 44(5):1526-39. PubMed ID: 15446810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteochemometric modelling coupled to in silico target prediction: an integrated approach for the simultaneous prediction of polypharmacology and binding affinity/potency of small molecules.
    Paricharak S; Cortés-Ciriano I; IJzerman AP; Malliavin TE; Bender A
    J Cheminform; 2015; 7():15. PubMed ID: 25926892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How diverse are diversity assessment methods? A comparative analysis and benchmarking of molecular descriptor space.
    Koutsoukas A; Paricharak S; Galloway WR; Spring DR; Ijzerman AP; Glen RC; Marcus D; Bender A
    J Chem Inf Model; 2014 Jan; 54(1):230-42. PubMed ID: 24289493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel automated lazy learning QSAR (ALL-QSAR) approach: method development, applications, and virtual screening of chemical databases using validated ALL-QSAR models.
    Zhang S; Golbraikh A; Oloff S; Kohn H; Tropsha A
    J Chem Inf Model; 2006; 46(5):1984-95. PubMed ID: 16995729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico binary classification QSAR models based on 4D-fingerprints and MOE descriptors for prediction of hERG blockage.
    Su BH; Shen MY; Esposito EX; Hopfinger AJ; Tseng YJ
    J Chem Inf Model; 2010 Jul; 50(7):1304-18. PubMed ID: 20565102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new ChEMBL dataset for the similarity-based target fishing engine FastTargetPred: Annotation of an exhaustive list of linear tetrapeptides.
    Tanwar S; Auberger P; Gillet G; DiPaola M; Tsaioun K; Villoutreix BO
    Data Brief; 2022 Jun; 42():108159. PubMed ID: 35496477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HDAC3i-Finder: A Machine Learning-based Computational Tool to Screen for HDAC3 Inhibitors.
    Li S; Ding Y; Chen M; Chen Y; Kirchmair J; Zhu Z; Wu S; Xia J
    Mol Inform; 2021 Mar; 40(3):e2000105. PubMed ID: 33067876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Descriptors, Structure Generation, and Inverse QSAR/QSPR Based on SELFIES.
    Kaneko H
    ACS Omega; 2023 Jun; 8(24):21781-21786. PubMed ID: 37360490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Cellular Morphological Descriptors and Molecular Fingerprints for the Prediction of Cytotoxicity- and Proliferation-Related Assays.
    Seal S; Yang H; Vollmers L; Bender A
    Chem Res Toxicol; 2021 Feb; 34(2):422-437. PubMed ID: 33522793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combinatorial QSAR modeling of specificity and subtype selectivity of ligands binding to serotonin receptors 5HT1E and 5HT1F.
    Wang XS; Tang H; Golbraikh A; Tropsha A
    J Chem Inf Model; 2008 May; 48(5):997-1013. PubMed ID: 18470978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovering Highly Potent Molecules from an Initial Set of Inactives Using Iterative Screening.
    Cortés-Ciriano I; Firth NC; Bender A; Watson O
    J Chem Inf Model; 2018 Sep; 58(9):2000-2014. PubMed ID: 30130102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selecting optimally diverse compounds from structure databases: a validation study of two-dimensional and three-dimensional molecular descriptors.
    Matter H
    J Med Chem; 1997 Apr; 40(8):1219-29. PubMed ID: 9111296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combinatorial QSAR of ambergris fragrance compounds.
    Kovatcheva A; Golbraikh A; Oloff S; Xiao YD; Zheng W; Wolschann P; Buchbauer G; Tropsha A
    J Chem Inf Comput Sci; 2004; 44(2):582-95. PubMed ID: 15032539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large scale comparison of QSAR and conformal prediction methods and their applications in drug discovery.
    Bosc N; Atkinson F; Felix E; Gaulton A; Hersey A; Leach AR
    J Cheminform; 2019 Jan; 11(1):4. PubMed ID: 30631996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.