These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33431017)

  • 1. Substructure-based neural machine translation for retrosynthetic prediction.
    Ucak UV; Kang T; Ko J; Lee J
    J Cheminform; 2021 Jan; 13(1):4. PubMed ID: 33431017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfer Learning: Making Retrosynthetic Predictions Based on a Small Chemical Reaction Dataset Scale to a New Level.
    Bai R; Zhang C; Wang L; Yao C; Ge J; Duan H
    Molecules; 2020 May; 25(10):. PubMed ID: 32438572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments.
    Ucak UV; Ashyrmamatov I; Ko J; Lee J
    Nat Commun; 2022 Mar; 13(1):1186. PubMed ID: 35246540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic retrosynthetic route planning using template-free models.
    Lin K; Xu Y; Pei J; Lai L
    Chem Sci; 2020 Mar; 11(12):3355-3364. PubMed ID: 34122843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting Retrosynthetic Reactions Using Self-Corrected Transformer Neural Networks.
    Zheng S; Rao J; Zhang Z; Xu J; Yang Y
    J Chem Inf Model; 2020 Jan; 60(1):47-55. PubMed ID: 31825611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ualign: pushing the limit of template-free retrosynthesis prediction with unsupervised SMILES alignment.
    Zeng K; Yang B; Zhao X; Zhang Y; Nie F; Yang X; Jin Y; Xu Y
    J Cheminform; 2024 Jul; 16(1):80. PubMed ID: 39010144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Transformer unifies reaction prediction and retrosynthesis across pharma chemical space.
    Lee AA; Yang Q; Sresht V; Bolgar P; Hou X; Klug-McLeod JL; Butler CR
    Chem Commun (Camb); 2019 Oct; 55(81):12152-12155. PubMed ID: 31497831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing Retrosynthetic Reaction Prediction with Deep Learning Using Multiscale Reaction Classification.
    Baylon JL; Cilfone NA; Gulcher JR; Chittenden TW
    J Chem Inf Model; 2019 Feb; 59(2):673-688. PubMed ID: 30642173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Permutation Invariant Graph-to-Sequence Model for Template-Free Retrosynthesis and Reaction Prediction.
    Tu Z; Coley CW
    J Chem Inf Model; 2022 Aug; 62(15):3503-3513. PubMed ID: 35881916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retrosynthetic Reaction Prediction Using Neural Sequence-to-Sequence Models.
    Liu B; Ramsundar B; Kawthekar P; Shi J; Gomes J; Luu Nguyen Q; Ho S; Sloane J; Wender P; Pande V
    ACS Cent Sci; 2017 Oct; 3(10):1103-1113. PubMed ID: 29104927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Harnessing Data Augmentation and Normalization Preprocessing to Improve the Performance of Chemical Reaction Predictions of Data-Driven Model.
    Zhang B; Lin J; Du L; Zhang L
    Polymers (Basel); 2023 May; 15(9):. PubMed ID: 37177370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-step retrosynthesis prediction by leveraging commonly preserved substructures.
    Fang L; Li J; Zhao M; Tan L; Lou JG
    Nat Commun; 2023 Apr; 14(1):2446. PubMed ID: 37117216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting retrosynthetic pathways using transformer-based models and a hyper-graph exploration strategy.
    Schwaller P; Petraglia R; Zullo V; Nair VH; Haeuselmann RA; Pisoni R; Bekas C; Iuliano A; Laino T
    Chem Sci; 2020 Mar; 11(12):3316-3325. PubMed ID: 34122839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Retrosynthetic Reaction Prediction using Local Reactivity and Global Attention.
    Chen S; Jung Y
    JACS Au; 2021 Oct; 1(10):1612-1620. PubMed ID: 34723264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retrosynthesis prediction using an end-to-end graph generative architecture for molecular graph editing.
    Zhong W; Yang Z; Chen CY
    Nat Commun; 2023 May; 14(1):3009. PubMed ID: 37230985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Root-aligned SMILES: a tight representation for chemical reaction prediction.
    Zhong Z; Song J; Feng Z; Liu T; Jia L; Yao S; Wu M; Hou T; Song M
    Chem Sci; 2022 Aug; 13(31):9023-9034. PubMed ID: 36091202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine Learning in Computer-Aided Synthesis Planning.
    Coley CW; Green WH; Jensen KF
    Acc Chem Res; 2018 May; 51(5):1281-1289. PubMed ID: 29715002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Transformer: A Model for Uncertainty-Calibrated Chemical Reaction Prediction.
    Schwaller P; Laino T; Gaudin T; Bolgar P; Hunter CA; Bekas C; Lee AA
    ACS Cent Sci; 2019 Sep; 5(9):1572-1583. PubMed ID: 31572784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergy Between Expert and Machine-Learning Approaches Allows for Improved Retrosynthetic Planning.
    Badowski T; Gajewska EP; Molga K; Grzybowski BA
    Angew Chem Int Ed Engl; 2020 Jan; 59(2):725-730. PubMed ID: 31750610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concept recognition as a machine translation problem.
    Boguslav MR; Hailu ND; Bada M; Baumgartner WA; Hunter LE
    BMC Bioinformatics; 2021 Dec; 22(Suppl 1):598. PubMed ID: 34920707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.