BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 33431037)

  • 1. DeepGraphMolGen, a multi-objective, computational strategy for generating molecules with desirable properties: a graph convolution and reinforcement learning approach.
    Khemchandani Y; O'Hagan S; Samanta S; Swainston N; Roberts TJ; Bollegala D; Kell DB
    J Cheminform; 2020 Sep; 12(1):53. PubMed ID: 33431037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecule generation toward target protein (SARS-CoV-2) using reinforcement learning-based graph neural network via knowledge graph.
    Ranjan A; Kumar H; Kumari D; Anand A; Misra R
    Netw Model Anal Health Inform Bioinform; 2023; 12(1):13. PubMed ID: 36627927
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Atance SR; Diez JV; Engkvist O; Olsson S; Mercado R
    J Chem Inf Model; 2022 Oct; 62(20):4863-4872. PubMed ID: 36219571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Network-principled deep generative models for designing drug combinations as graph sets.
    Karimi M; Hasanzadeh A; Shen Y
    Bioinformatics; 2020 Jul; 36(Suppl_1):i445-i454. PubMed ID: 32657357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MoleGuLAR: Molecule Generation Using Reinforcement Learning with Alternating Rewards.
    Goel M; Raghunathan S; Laghuvarapu S; Priyakumar UD
    J Chem Inf Model; 2021 Dec; 61(12):5815-5826. PubMed ID: 34866384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FSM-DDTR: End-to-end feedback strategy for multi-objective De Novo drug design using transformers.
    Monteiro NRC; Pereira TO; Machado ACD; Oliveira JL; Abbasi M; Arrais JP
    Comput Biol Med; 2023 Sep; 164():107285. PubMed ID: 37557054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo drug design based on Stack-RNN with multi-objective reward-weighted sum and reinforcement learning.
    Hu P; Zou J; Yu J; Shi S
    J Mol Model; 2023 Mar; 29(4):121. PubMed ID: 36991180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DrugEx v2: de novo design of drug molecules by Pareto-based multi-objective reinforcement learning in polypharmacology.
    Liu X; Ye K; van Vlijmen HWT; Emmerich MTM; IJzerman AP; van Westen GJP
    J Cheminform; 2021 Nov; 13(1):85. PubMed ID: 34772471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GRELinker: A Graph-Based Generative Model for Molecular Linker Design with Reinforcement and Curriculum Learning.
    Zhang H; Huang J; Xie J; Huang W; Yang Y; Xu M; Lei J; Chen H
    J Chem Inf Model; 2024 Feb; 64(3):666-676. PubMed ID: 38241022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MedGAN: optimized generative adversarial network with graph convolutional networks for novel molecule design.
    Macedo B; Ribeiro Vaz I; Taveira Gomes T
    Sci Rep; 2024 Jan; 14(1):1212. PubMed ID: 38216614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-objective de novo drug design with conditional graph generative model.
    Li Y; Zhang L; Liu Z
    J Cheminform; 2018 Jul; 10(1):33. PubMed ID: 30043127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo drug design by iterative multiobjective deep reinforcement learning with graph-based molecular quality assessment.
    Fang Y; Pan X; Shen HB
    Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 36961341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of binding affinities in chemical space with generative pre-trained transformer and deep reinforcement learning.
    Xu X; Zhou J; Zhu C; Zhan Q; Li Z; Zhang R; Wang Y; Liao X; Gao X
    F1000Res; 2023; 12():757. PubMed ID: 38434657
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Staker J; Marshall K; Leswing K; Robertson T; Halls MD; Goldberg A; Morisato T; Maeshima H; Ando T; Arai H; Sasago M; Fujii E; Matsuzawa NN
    J Phys Chem A; 2022 Sep; 126(34):5837-5852. PubMed ID: 35984470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies for Design of Molecular Structures with a Desired Pharmacophore Using Deep Reinforcement Learning.
    Yoshimori A; Kawasaki E; Kanai C; Tasaka T
    Chem Pharm Bull (Tokyo); 2020; 68(3):227-233. PubMed ID: 32115529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo generation of dual-target ligands using adversarial training and reinforcement learning.
    Lu F; Li M; Min X; Li C; Zeng X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34410338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generative and reinforcement learning approaches for the automated de novo design of bioactive compounds.
    Korshunova M; Huang N; Capuzzi S; Radchenko DS; Savych O; Moroz YS; Wells CI; Willson TM; Tropsha A; Isayev O
    Commun Chem; 2022 Oct; 5(1):129. PubMed ID: 36697952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving drug discovery with a hybrid deep generative model using reinforcement learning trained on a Bayesian docking approximation.
    Xiong Y; Wang Y; Wang Y; Li C; Yusong P; Wu J; Wang Y; Gu L; Butch CJ
    J Comput Aided Mol Des; 2023 Nov; 37(11):507-517. PubMed ID: 37550462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep reinforcement learning for de novo drug design.
    Popova M; Isayev O; Tropsha A
    Sci Adv; 2018 Jul; 4(7):eaap7885. PubMed ID: 30050984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Agent Decision-Making Modes in Uncertain Interactive Traffic Scenarios via Graph Convolution-Based Deep Reinforcement Learning.
    Gao X; Li X; Liu Q; Li Z; Yang F; Luan T
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.