BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 33431037)

  • 21. Multi-Objective Drug Design Based on Graph-Fragment Molecular Representation and Deep Evolutionary Learning.
    Mukaidaisi M; Vu A; Grantham K; Tchagang A; Li Y
    Front Pharmacol; 2022; 13():920747. PubMed ID: 35860028
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multi-Stream Attention-Aware Graph Convolution Network for Video Salient Object Detection.
    Xu M; Fu P; Liu B; Li J
    IEEE Trans Image Process; 2021; 30():4183-4197. PubMed ID: 33822725
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DrugEx v3: scaffold-constrained drug design with graph transformer-based reinforcement learning.
    Liu X; Ye K; van Vlijmen HWT; IJzerman AP; van Westen GJP
    J Cheminform; 2023 Feb; 15(1):24. PubMed ID: 36803659
    [TBL] [Abstract][Full Text] [Related]  

  • 24. IHG-MA: Inductive heterogeneous graph multi-agent reinforcement learning for multi-intersection traffic signal control.
    Yang S; Yang B; Kang Z; Deng L
    Neural Netw; 2021 Jul; 139():265-277. PubMed ID: 33838602
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DeepNC: a framework for drug-target interaction prediction with graph neural networks.
    Tran HNT; Thomas JJ; Ahamed Hassain Malim NH
    PeerJ; 2022; 10():e13163. PubMed ID: 35578674
    [TBL] [Abstract][Full Text] [Related]  

  • 26. De Novo Molecule Design by Translating from Reduced Graphs to SMILES.
    Pogány P; Arad N; Genway S; Pickett SD
    J Chem Inf Model; 2019 Mar; 59(3):1136-1146. PubMed ID: 30525594
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecule generation using transformers and policy gradient reinforcement learning.
    Mazuz E; Shtar G; Shapira B; Rokach L
    Sci Rep; 2023 May; 13(1):8799. PubMed ID: 37258546
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PaccMann
    Born J; Manica M; Oskooei A; Cadow J; Markert G; Rodríguez Martínez M
    iScience; 2021 Apr; 24(4):102269. PubMed ID: 33851095
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ReGen-DTI: A novel generative drug target interaction model for predicting potential drug candidates against SARS-COV2.
    Sivangi KB; Amilpur S; Dasari CM
    Comput Biol Chem; 2023 Oct; 106():107927. PubMed ID: 37499436
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Magicmol: a light-weighted pipeline for drug-like molecule evolution and quick chemical space exploration.
    Chen L; Shen Q; Lou J
    BMC Bioinformatics; 2023 Apr; 24(1):173. PubMed ID: 37101113
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A flexible data-free framework for structure-based
    Du H; Jiang D; Zhang O; Wu Z; Gao J; Zhang X; Wang X; Deng Y; Kang Y; Li D; Pan P; Hsieh CY; Hou T
    Chem Sci; 2023 Nov; 14(43):12166-12181. PubMed ID: 37969589
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Node similarity-based graph convolution for link prediction in biological networks.
    Coşkun M; Koyutürk M
    Bioinformatics; 2021 Dec; 37(23):4501-4508. PubMed ID: 34152393
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient learning of non-autoregressive graph variational autoencoders for molecular graph generation.
    Kwon Y; Yoo J; Choi YS; Son WJ; Lee D; Kang S
    J Cheminform; 2019 Nov; 11(1):70. PubMed ID: 33430985
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Actively Searching: Inverse Design of Novel Molecules with Simultaneously Optimized Properties.
    Iovanac NC; MacKnight R; Savoie BM
    J Phys Chem A; 2022 Jan; 126(2):333-340. PubMed ID: 34985908
    [TBL] [Abstract][Full Text] [Related]  

  • 35. GeCNs: Graph Elastic Convolutional Networks for Data Representation.
    Jiang B; Wang B; Tang J; Luo B
    IEEE Trans Pattern Anal Mach Intell; 2022 Sep; 44(9):4935-4947. PubMed ID: 33798070
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MGCVAE: Multi-Objective Inverse Design via Molecular Graph Conditional Variational Autoencoder.
    Lee M; Min K
    J Chem Inf Model; 2022 Jun; 62(12):2943-2950. PubMed ID: 35666276
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimizing blood-brain barrier permeation through deep reinforcement learning for de novo drug design.
    Pereira T; Abbasi M; Oliveira JL; Ribeiro B; Arrais J
    Bioinformatics; 2021 Jul; 37(Suppl_1):i84-i92. PubMed ID: 34252946
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The power of deep learning to ligand-based novel drug discovery.
    Baskin II
    Expert Opin Drug Discov; 2020 Jul; 15(7):755-764. PubMed ID: 32228116
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gargoyles: An Open Source Graph-Based Molecular Optimization Method Based on Deep Reinforcement Learning.
    Erikawa D; Yasuo N; Suzuki T; Nakamura S; Sekijima M
    ACS Omega; 2023 Oct; 8(40):37431-37441. PubMed ID: 37841174
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Graph Convolution Networks with manifold regularization for semi-supervised learning.
    Kejani MT; Dornaika F; Talebi H
    Neural Netw; 2020 Jul; 127():160-167. PubMed ID: 32361546
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.