These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 33431042)

  • 1. Evaluation of deep and shallow learning methods in chemogenomics for the prediction of drugs specificity.
    Playe B; Stoven V
    J Cheminform; 2020 Feb; 12(1):11. PubMed ID: 33431042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning-Based Modeling of Drug-Target Interaction Prediction Incorporating Binding Site Information of Proteins.
    D'Souza S; Prema KV; Balaji S; Shah R
    Interdiscip Sci; 2023 Jun; 15(2):306-315. PubMed ID: 36967455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Employing Molecular Conformations for Ligand-Based Virtual Screening with Equivariant Graph Neural Network and Deep Multiple Instance Learning.
    Gu Y; Li J; Kang H; Zhang B; Zheng S
    Molecules; 2023 Aug; 28(16):. PubMed ID: 37630234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ALDPI: adaptively learning importance of multi-scale topologies and multi-modality similarities for drug-protein interaction prediction.
    Hu K; Cui H; Zhang T; Sun C; Xuan P
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35108362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active learning for computational chemogenomics.
    Reker D; Schneider P; Schneider G; Brown JB
    Future Med Chem; 2017 Mar; 9(4):381-402. PubMed ID: 28263088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A chemogenomics view on protein-ligand spaces.
    Strömbergsson H; Kleywegt GJ
    BMC Bioinformatics; 2009 Jun; 10 Suppl 6(Suppl 6):S13. PubMed ID: 19534738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.
    Pan X; Shen HB
    BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set.
    Lenselink EB; Ten Dijke N; Bongers B; Papadatos G; van Vlijmen HWT; Kowalczyk W; IJzerman AP; van Westen GJP
    J Cheminform; 2017 Aug; 9(1):45. PubMed ID: 29086168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boosting compound-protein interaction prediction by deep learning.
    Tian K; Shao M; Wang Y; Guan J; Zhou S
    Methods; 2016 Nov; 110():64-72. PubMed ID: 27378654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-modality attribute learning-based method for drug-protein interaction prediction based on deep neural network.
    Dong W; Yang Q; Wang J; Xu L; Li X; Luo G; Gao X
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37114624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benchmarking a Wide Range of Chemical Descriptors for Drug-Target Interaction Prediction Using a Chemogenomic Approach.
    Sawada R; Kotera M; Yamanishi Y
    Mol Inform; 2014 Dec; 33(11-12):719-31. PubMed ID: 27485418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BACPI: a bi-directional attention neural network for compound-protein interaction and binding affinity prediction.
    Li M; Lu Z; Wu Y; Li Y
    Bioinformatics; 2022 Mar; 38(7):1995-2002. PubMed ID: 35043942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patient Representation Learning From Heterogeneous Data Sources and Knowledge Graphs Using Deep Collective Matrix Factorization: Evaluation Study.
    Kumar S; Nanelia A; Mariappan R; Rajagopal A; Rajan V
    JMIR Med Inform; 2022 Jan; 10(1):e28842. PubMed ID: 35049514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting drug-drug interactions using multi-modal deep auto-encoders based network embedding and positive-unlabeled learning.
    Zhang Y; Qiu Y; Cui Y; Liu S; Zhang W
    Methods; 2020 Jul; 179():37-46. PubMed ID: 32497603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A deep neural network approach to predicting clinical outcomes of neuroblastoma patients.
    Tranchevent LC; Azuaje F; Rajapakse JC
    BMC Med Genomics; 2019 Dec; 12(Suppl 8):178. PubMed ID: 31856829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient multi-task chemogenomics for drug specificity prediction.
    Playe B; Azencott CA; Stoven V
    PLoS One; 2018; 13(10):e0204999. PubMed ID: 30286165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of Deep and Shallow Neural Networks, the Universal Approximation Theorem, Activity Cliffs, and QSAR.
    Winkler DA; Le TC
    Mol Inform; 2017 Jan; 36(1-2):. PubMed ID: 27783464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational chemogenomics: is it more than inductive transfer?
    Brown JB; Okuno Y; Marcou G; Varnek A; Horvath D
    J Comput Aided Mol Des; 2014 Jun; 28(6):597-618. PubMed ID: 24771144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences.
    Tsubaki M; Tomii K; Sese J
    Bioinformatics; 2019 Jan; 35(2):309-318. PubMed ID: 29982330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.