BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

482 related articles for article (PubMed ID: 33431046)

  • 1. CNS glucose metabolism in Amyotrophic Lateral Sclerosis: a therapeutic target?
    Tefera TW; Steyn FJ; Ngo ST; Borges K
    Cell Biosci; 2021 Jan; 11(1):14. PubMed ID: 33431046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic Dysfunctions in Amyotrophic Lateral Sclerosis Pathogenesis and Potential Metabolic Treatments.
    Tefera TW; Borges K
    Front Neurosci; 2016; 10():611. PubMed ID: 28119559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of Metabolic Dysfunction in Amyotrophic Lateral Sclerosis (ALS) Patients and Animal Models.
    Maksimovic K; Youssef M; You J; Sung HK; Park J
    Biomolecules; 2023 May; 13(5):. PubMed ID: 37238732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AMPK Signalling and Defective Energy Metabolism in Amyotrophic Lateral Sclerosis.
    Perera ND; Turner BJ
    Neurochem Res; 2016 Mar; 41(3):544-53. PubMed ID: 26202426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaired Pentose Phosphate Pathway in the Spinal Cord of the hSOD1
    Tefera TW; Bartlett K; Tran SS; Hodson MP; Borges K
    Mol Neurobiol; 2019 Aug; 56(8):5844-5855. PubMed ID: 30685842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superoxide dismutase 1 mutation in a cellular model of amyotrophic lateral sclerosis shifts energy generation from oxidative phosphorylation to glycolysis.
    Allen SP; Rajan S; Duffy L; Mortiboys H; Higginbottom A; Grierson AJ; Shaw PJ
    Neurobiol Aging; 2014 Jun; 35(6):1499-509. PubMed ID: 24439480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy metabolism in ALS: an underappreciated opportunity?
    Vandoorne T; De Bock K; Van Den Bosch L
    Acta Neuropathol; 2018 Apr; 135(4):489-509. PubMed ID: 29549424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interplay between metabolic homeostasis and neurodegeneration: insights into the neurometabolic nature of amyotrophic lateral sclerosis.
    Ngo ST; Steyn FJ
    Cell Regen; 2015; 4(1):5. PubMed ID: 26322226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic Dysregulation in Amyotrophic Lateral Sclerosis: Challenges and Opportunities.
    Joardar A; Manzo E; Zarnescu DC
    Curr Genet Med Rep; 2017 Jun; 5(2):108-114. PubMed ID: 29057168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What is "Hyper" in the ALS Hypermetabolism?
    Ferri A; Coccurello R
    Mediators Inflamm; 2017; 2017():7821672. PubMed ID: 29081604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skeletal Muscle Metabolism: Origin or Prognostic Factor for Amyotrophic Lateral Sclerosis (ALS) Development?
    Quessada C; Bouscary A; René F; Valle C; Ferri A; Ngo ST; Loeffler JP
    Cells; 2021 Jun; 10(6):. PubMed ID: 34207859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glial Metabolic Reprogramming in Amyotrophic Lateral Sclerosis.
    Cassina P; Miquel E; Martínez-Palma L; Cassina A
    Neuroimmunomodulation; 2021; 28(4):204-212. PubMed ID: 34175843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding and managing metabolic dysfunction in Amyotrophic Lateral Sclerosis.
    Blasco H; Lanznaster D; Veyrat-Durebex C; Hergesheimer R; Vourch P; Maillot F; Andres CR; Pradat PF; Corcia P
    Expert Rev Neurother; 2020 Sep; 20(9):907-919. PubMed ID: 32583696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decreased Glycogenolysis by
    Li C; Wei Q; Gu X; Chen Y; Chen X; Cao B; Ou R; Shang H
    Front Mol Neurosci; 2019; 12():114. PubMed ID: 31133799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the Mitochondrial Aerobic Metabolism in the Pre- and Perisynaptic Districts of the SOD1
    Ravera S; Bonifacino T; Bartolucci M; Milanese M; Gallia E; Provenzano F; Cortese K; Panfoli I; Bonanno G
    Mol Neurobiol; 2018 Dec; 55(12):9220-9233. PubMed ID: 29656361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spinal Cord Metabolic Signatures in Models of Fast- and Slow-Progressing SOD1
    Valbuena GN; Cantoni L; Tortarolo M; Bendotti C; Keun HC
    Front Neurosci; 2019; 13():1276. PubMed ID: 31920474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macrophage-mediated inflammation and glial response in the skeletal muscle of a rat model of familial amyotrophic lateral sclerosis (ALS).
    Van Dyke JM; Smit-Oistad IM; Macrander C; Krakora D; Meyer MG; Suzuki M
    Exp Neurol; 2016 Mar; 277():275-282. PubMed ID: 26775178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TDP-43 Proteinopathy Causes Broad Metabolic Alterations including TCA Cycle Intermediates and Dopamine Levels in Drosophila Models of ALS.
    Loganathan S; Wilson BA; Carey SB; Manzo E; Joardar A; Ugur B; Zarnescu DC
    Metabolites; 2022 Jan; 12(2):. PubMed ID: 35208176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic Insights of Mitochondrial Dysfunction in Amyotrophic Lateral Sclerosis: An Update on a Lasting Relationship.
    Candelise N; Salvatori I; Scaricamazza S; Nesci V; Zenuni H; Ferri A; Valle C
    Metabolites; 2022 Mar; 12(3):. PubMed ID: 35323676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Guanabenz delays the onset of disease symptoms, extends lifespan, improves motor performance and attenuates motor neuron loss in the SOD1 G93A mouse model of amyotrophic lateral sclerosis.
    Jiang HQ; Ren M; Jiang HZ; Wang J; Zhang J; Yin X; Wang SY; Qi Y; Wang XD; Feng HL
    Neuroscience; 2014 Sep; 277():132-8. PubMed ID: 24699224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.