These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 33431050)

  • 1. Compressed graph representation for scalable molecular graph generation.
    Kwon Y; Lee D; Choi YS; Shin K; Kang S
    J Cheminform; 2020 Sep; 12(1):58. PubMed ID: 33431050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient learning of non-autoregressive graph variational autoencoders for molecular graph generation.
    Kwon Y; Yoo J; Choi YS; Son WJ; Lee D; Kang S
    J Cheminform; 2019 Nov; 11(1):70. PubMed ID: 33430985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SCGG: A deep structure-conditioned graph generative model.
    Faez F; Hashemi Dijujin N; Soleymani Baghshah M; Rabiee HR
    PLoS One; 2022; 17(11):e0277887. PubMed ID: 36409705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fragment-based deep molecular generation using hierarchical chemical graph representation and multi-resolution graph variational autoencoder.
    Gao Z; Wang X; Blumenfeld Gaines B; Shi X; Bi J; Song M
    Mol Inform; 2023 May; 42(5):e2200215. PubMed ID: 36764926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graph generative and adversarial strategy-enhanced node feature learning and self-calibrated pairwise attribute encoding for prediction of drug-related side effects.
    Xuan P; Xu K; Cui H; Nakaguchi T; Zhang T
    Front Pharmacol; 2023; 14():1257842. PubMed ID: 37731739
    [No Abstract]   [Full Text] [Related]  

  • 6. Generative Graph Prototypes from Information Theory.
    Han L; Wilson RC; Hancock ER
    IEEE Trans Pattern Anal Mach Intell; 2015 Oct; 37(10):2013-27. PubMed ID: 26340255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-Embedding of Nodes and Edges With Graph Neural Networks.
    Jiang X; Zhu R; Ji P; Li S
    IEEE Trans Pattern Anal Mach Intell; 2023 Jun; 45(6):7075-7086. PubMed ID: 33052851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scalable graph neural network for NMR chemical shift prediction.
    Han J; Kang H; Kang S; Kwon Y; Lee D; Choi YS
    Phys Chem Chem Phys; 2022 Nov; 24(43):26870-26878. PubMed ID: 36317530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Systematic Survey on Deep Generative Models for Graph Generation.
    Guo X; Zhao L
    IEEE Trans Pattern Anal Mach Intell; 2023 May; 45(5):5370-5390. PubMed ID: 36251910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geometry-Based Molecular Generation With Deep Constrained Variational Autoencoder.
    Li C; Yao J; Wei W; Niu Z; Zeng X; Li J; Wang J
    IEEE Trans Neural Netw Learn Syst; 2024 Apr; 35(4):4852-4861. PubMed ID: 35171779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small molecule generation via disentangled representation learning.
    Du Y; Guo X; Wang Y; Shehu A; Zhao L
    Bioinformatics; 2022 Jun; 38(12):3200-3208. PubMed ID: 35511125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ScaffoldGVAE: scaffold generation and hopping of drug molecules via a variational autoencoder based on multi-view graph neural networks.
    Hu C; Li S; Yang C; Chen J; Xiong Y; Fan G; Liu H; Hong L
    J Cheminform; 2023 Oct; 15(1):91. PubMed ID: 37794460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A representation learning model based on variational inference and graph autoencoder for predicting lncRNA-disease associations.
    Shi Z; Zhang H; Jin C; Quan X; Yin Y
    BMC Bioinformatics; 2021 Mar; 22(1):136. PubMed ID: 33745450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Masked graph modeling for molecule generation.
    Mahmood O; Mansimov E; Bonneau R; Cho K
    Nat Commun; 2021 May; 12(1):3156. PubMed ID: 34039973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direction Matters: On Influence-Preserving Graph Summarization and Max-Cut Principle for Directed Graphs.
    Xu W; Niu G; Hyvärinen A; Sugiyama M
    Neural Comput; 2021 Jul; 33(8):2128-2162. PubMed ID: 34310677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-objective de novo drug design with conditional graph generative model.
    Li Y; Zhang L; Liu Z
    J Cheminform; 2018 Jul; 10(1):33. PubMed ID: 30043127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BatmanNet: bi-branch masked graph transformer autoencoder for molecular representation.
    Wang Z; Feng Z; Li Y; Li B; Wang Y; Sha C; He M; Li X
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38033291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GRAPE for fast and scalable graph processing and random-walk-based embedding.
    Cappelletti L; Fontana T; Casiraghi E; Ravanmehr V; Callahan TJ; Cano C; Joachimiak MP; Mungall CJ; Robinson PN; Reese J; Valentini G
    Nat Comput Sci; 2023 Jun; 3(6):552-568. PubMed ID: 38177435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. edge2vec: Representation learning using edge semantics for biomedical knowledge discovery.
    Gao Z; Fu G; Ouyang C; Tsutsui S; Liu X; Yang J; Gessner C; Foote B; Wild D; Ding Y; Yu Q
    BMC Bioinformatics; 2019 Jun; 20(1):306. PubMed ID: 31238875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FAME: Fragment-based Conditional Molecular Generation for Phenotypic Drug Discovery.
    Pham TH; Xie L; Zhang P
    Proc SIAM Int Conf Data Min; 2022; 2022():720-728. PubMed ID: 35509686
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.