These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33431586)

  • 1. Water emissions put a damper on the coal-to-gas transition.
    Bowen GJ; Fiorella RP
    Proc Natl Acad Sci U S A; 2021 Feb; 118(5):. PubMed ID: 33431586
    [No Abstract]   [Full Text] [Related]  

  • 2. Natural gas shortages during the "coal-to-gas" transition in China have caused a large redistribution of air pollution in winter 2017.
    Wang S; Su H; Chen C; Tao W; Streets DG; Lu Z; Zheng B; Carmichael GR; Lelieveld J; Pöschl U; Cheng Y
    Proc Natl Acad Sci U S A; 2020 Dec; 117(49):31018-31025. PubMed ID: 33229579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combustion and NOx emission characteristics with respect to staged-air damper opening in a 600 MWe down-fired pulverized-coal furnace under deep-air-staging conditions.
    Kuang M; Li Z; Wang Z; Jing X; Liu C; Zhu Q; Ling Z
    Environ Sci Technol; 2014; 48(1):837-44. PubMed ID: 24274316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of gas emissions from coal stockpile.
    Kozinc J; Zupancic-Kralj L; Zapusek A
    Chemosphere; 2004 May; 55(8):1121-6. PubMed ID: 15050809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active methods of mercury removal from flue gases.
    Marczak M; Budzyń S; Szczurowski J; Kogut K; Burmistrz P
    Environ Sci Pollut Res Int; 2019 Mar; 26(9):8383-8392. PubMed ID: 29572741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of rural residential coal combustion on air pollution in Shandong, China.
    Zhou Y; Zi T; Lang J; Huang D; Wei P; Chen D; Cheng S
    Chemosphere; 2020 Dec; 260():127517. PubMed ID: 32758768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Source identification of combustion-related air pollution during an episode and afterwards in winter-time in Istanbul.
    Kuzu SL
    Environ Sci Pollut Res Int; 2019 Jun; 26(17):16815-16824. PubMed ID: 27730504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Composition of a gas and ash mixture formed during the pyrolysis and combustion of coal-water slurries containing petrochemicals.
    Dorokhov VV; Kuznetsov GV; Nyashina GS; Strizhak PA
    Environ Pollut; 2021 Sep; 285():117390. PubMed ID: 34049129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emissions from carpet combustion in a pilot-scale rotary kiln: comparison with coal and particle-board combustion.
    Konopa SL; Mulholland JA; Realff MJ; Lemieux PM
    J Air Waste Manag Assoc; 2008 Aug; 58(8):1070-6. PubMed ID: 18720656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. U.S. Shale Gas versus China's Coal as Chemical Feedstock.
    Yang CJ
    Environ Sci Technol; 2015 Aug; 49(16):9501-2. PubMed ID: 26250647
    [No Abstract]   [Full Text] [Related]  

  • 11. Water-soluble ion components of PM
    Hong Y; Ma Y; Sun J; Li C; Zhang Y; Li X; Zhou D; Yangfeng Wang ; Liu N
    Environ Sci Pollut Res Int; 2019 Mar; 26(7):7055-7070. PubMed ID: 30645747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gas composition during thermochemical conversion of dry solid fuels and waste-derived slurries.
    Nyashina G; Dorokhov V; Romanov D; Strizhak P
    Environ Sci Pollut Res Int; 2023 Feb; 30(9):24192-24211. PubMed ID: 36333632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do China's coal-to-gas policies improve regional environmental quality? A case of Beijing.
    Wang J; Li Z; Ye H; Mei Y; Fu J; Li Q
    Environ Sci Pollut Res Int; 2021 Nov; 28(41):57667-57685. PubMed ID: 34091836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of Speciated Mercury Emissions from Coal Combustion in Air and Oxygen-Enriched Environment.
    Sun Y; Lv G; Zhang H; Zhang X; Bu X; Wang X; Zhang W; Tong Y
    Bull Environ Contam Toxicol; 2019 May; 102(5):695-700. PubMed ID: 31065732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mercury speciation and mass distribution of coal-fired power plants in Taiwan using different air pollution control processes.
    Chou CP; Chiu CH; Chang TC; Hsi HC
    J Air Waste Manag Assoc; 2021 May; 71(5):553-563. PubMed ID: 33284737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Health effects of the gas-aerosol complex. Report to Special Committee on Health and Ecological Effects of Increased Coal Utilization.
    Goldstein BD
    Environ Health Perspect; 1979 Dec; 33():191-202. PubMed ID: 120252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the effect of the coal-to-gas program on air pollution: evidence from China.
    Leng X; Zhao X; Li H
    Environ Sci Pollut Res Int; 2023 Feb; 30(9):24027-24042. PubMed ID: 36331728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatially and Temporally Resolved Analysis of Environmental Trade-Offs in Electricity Generation.
    Peer RA; Garrison JB; Timms CP; Sanders KT
    Environ Sci Technol; 2016 Apr; 50(8):4537-45. PubMed ID: 26967826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated assessment of the environmental and economic effects of "coal-to-gas conversion" project in rural areas of northern China.
    Li Y; Yuan X; Tang Y; Wang Q; Ma Q; Mu R; Fu J; Hong J; Kellett J; Zuo J
    Environ Sci Pollut Res Int; 2020 May; 27(13):14503-14514. PubMed ID: 32040743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of the air pollution emission reduction effect of the coal substitution policy in China: an improved grey modelling approach.
    Shou MH; Wang ZX; Li DD; Wang Y
    Environ Sci Pollut Res Int; 2020 Sep; 27(27):34357-34368. PubMed ID: 32557069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.