These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 33431673)

  • 1. Unsupervised neural network models of the ventral visual stream.
    Zhuang C; Yan S; Nayebi A; Schrimpf M; Frank MC; DiCarlo JJ; Yamins DLK
    Proc Natl Acad Sci U S A; 2021 Jan; 118(3):. PubMed ID: 33431673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-accidental properties, metric invariance, and encoding by neurons in a model of ventral stream visual object recognition, VisNet.
    Rolls ET; Mills WPC
    Neurobiol Learn Mem; 2018 Jul; 152():20-31. PubMed ID: 29723671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Visual Encoding Model Based on Contrastive Self-Supervised Learning for Human Brain Activity along the Ventral Visual Stream.
    Li J; Zhang C; Wang L; Ding P; Hu L; Yan B; Tong L
    Brain Sci; 2021 Jul; 11(8):. PubMed ID: 34439623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural population control via deep image synthesis.
    Bashivan P; Kar K; DiCarlo JJ
    Science; 2019 May; 364(6439):. PubMed ID: 31048462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variational autoencoder: An unsupervised model for encoding and decoding fMRI activity in visual cortex.
    Han K; Wen H; Shi J; Lu KH; Zhang Y; Fu D; Liu Z
    Neuroimage; 2019 Sep; 198():125-136. PubMed ID: 31103784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance-optimized hierarchical models predict neural responses in higher visual cortex.
    Yamins DL; Hong H; Cadieu CF; Solomon EA; Seibert D; DiCarlo JJ
    Proc Natl Acad Sci U S A; 2014 Jun; 111(23):8619-24. PubMed ID: 24812127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recurrent Connections in the Primate Ventral Visual Stream Mediate a Trade-Off Between Task Performance and Network Size During Core Object Recognition.
    Nayebi A; Sagastuy-Brena J; Bear DM; Kar K; Kubilius J; Ganguli S; Sussillo D; DiCarlo JJ; Yamins DLK
    Neural Comput; 2022 Jul; 34(8):1652-1675. PubMed ID: 35798321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. View-Tolerant Face Recognition and Hebbian Learning Imply Mirror-Symmetric Neural Tuning to Head Orientation.
    Leibo JZ; Liao Q; Anselmi F; Freiwald WA; Poggio T
    Curr Biol; 2017 Jan; 27(1):62-67. PubMed ID: 27916522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Ventral Visual Pathway Represents Animal Appearance over Animacy, Unlike Human Behavior and Deep Neural Networks.
    Bracci S; Ritchie JB; Kalfas I; Op de Beeck HP
    J Neurosci; 2019 Aug; 39(33):6513-6525. PubMed ID: 31196934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coding of visual objects in the ventral stream.
    Reddy L; Kanwisher N
    Curr Opin Neurobiol; 2006 Aug; 16(4):408-14. PubMed ID: 16828279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unsupervised deep learning identifies semantic disentanglement in single inferotemporal face patch neurons.
    Higgins I; Chang L; Langston V; Hassabis D; Summerfield C; Tsao D; Botvinick M
    Nat Commun; 2021 Nov; 12(1):6456. PubMed ID: 34753913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orthogonal Representations of Object Shape and Category in Deep Convolutional Neural Networks and Human Visual Cortex.
    Zeman AA; Ritchie JB; Bracci S; Op de Beeck H
    Sci Rep; 2020 Feb; 10(1):2453. PubMed ID: 32051467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hybrid learning network for shift-invariant recognition.
    Wang R
    Neural Netw; 2001 Oct; 14(8):1061-73. PubMed ID: 11681751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An ecologically motivated image dataset for deep learning yields better models of human vision.
    Mehrer J; Spoerer CJ; Jones EC; Kriegeskorte N; Kietzmann TC
    Proc Natl Acad Sci U S A; 2021 Feb; 118(8):. PubMed ID: 33593900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A self-supervised domain-general learning framework for human ventral stream representation.
    Konkle T; Alvarez GA
    Nat Commun; 2022 Jan; 13(1):491. PubMed ID: 35078981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biologically plausible deep learning - But how far can we go with shallow networks?
    Illing B; Gerstner W; Brea J
    Neural Netw; 2019 Oct; 118():90-101. PubMed ID: 31254771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural dynamics at successive stages of the ventral visual stream are consistent with hierarchical error signals.
    Issa EB; Cadieu CF; DiCarlo JJ
    Elife; 2018 Nov; 7():. PubMed ID: 30484773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Invariant visual object recognition: biologically plausible approaches.
    Robinson L; Rolls ET
    Biol Cybern; 2015 Oct; 109(4-5):505-35. PubMed ID: 26335743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial scene representations formed by self-organizing learning in a hippocampal extension of the ventral visual system.
    Rolls ET; Tromans JM; Stringer SM
    Eur J Neurosci; 2008 Nov; 28(10):2116-27. PubMed ID: 19046392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A unifying framework for functional organization in early and higher ventral visual cortex.
    Margalit E; Lee H; Finzi D; DiCarlo JJ; Grill-Spector K; Yamins DLK
    Neuron; 2024 Jul; 112(14):2435-2451.e7. PubMed ID: 38733985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.