These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33431874)

  • 1. A dataset of EEG and EOG from an auditory EOG-based communication system for patients in locked-in state.
    Jaramillo-Gonzalez A; Wu S; Tonin A; Rana A; Ardali MK; Birbaumer N; Chaudhary U
    Sci Data; 2021 Jan; 8(1):8. PubMed ID: 33431874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of eye tracking, electrooculography and an auditory brain-computer interface for binary communication: a case study with a participant in the locked-in state.
    Käthner I; Kübler A; Halder S
    J Neuroeng Rehabil; 2015 Sep; 12():76. PubMed ID: 26338101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auditory Electrooculogram-based Communication System for ALS Patients in Transition from Locked-in to Complete Locked-in State.
    Tonin A; Jaramillo-Gonzalez A; Rana A; Khalili-Ardali M; Birbaumer N; Chaudhary U
    Sci Rep; 2020 May; 10(1):8452. PubMed ID: 32439995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an electrooculogram-based eye-computer interface for communication of individuals with amyotrophic lateral sclerosis.
    Chang WD; Cha HS; Kim DY; Kim SH; Im CH
    J Neuroeng Rehabil; 2017 Sep; 14(1):89. PubMed ID: 28886720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an electrooculogram-based human-computer interface using involuntary eye movement by spatially rotating sound for communication of locked-in patients.
    Kim DY; Han CH; Im CH
    Sci Rep; 2018 Jun; 8(1):9505. PubMed ID: 29934518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the use of electrooculogram for efficient human computer interfaces.
    Usakli AB; Gurkan S; Aloise F; Vecchiato G; Babiloni F
    Comput Intell Neurosci; 2010; 2010():135629. PubMed ID: 19841687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Wearable Forehead EOG Measurement System for Human Computer Interfaces.
    Heo J; Yoon H; Park KS
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28644398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eye movement in amyotrophic lateral sclerosis: a longitudinal study.
    Palmowski A; Jost WH; Prudlo J; Osterhage J; Käsmann B; Schimrigk K; Ruprecht KW
    Ger J Ophthalmol; 1995 Nov; 4(6):355-62. PubMed ID: 8751101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A High Performance Spelling System based on EEG-EOG Signals With Visual Feedback.
    Lee MH; Williamson J; Won DO; Fazli S; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jul; 26(7):1443-1459. PubMed ID: 29985154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EEG-EOG based Virtual Keyboard: Toward Hybrid Brain Computer Interface.
    Hosni SM; Shedeed HA; Mabrouk MS; Tolba MF
    Neuroinformatics; 2019 Jul; 17(3):323-341. PubMed ID: 30368637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An eye movement disorder in amyotrophic lateral sclerosis.
    Jacobs L; Bozian D; Heffner RR; Barron SA
    Neurology; 1981 Oct; 31(10):1282-7. PubMed ID: 7202138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spelling interface using intracortical signals in a completely locked-in patient enabled via auditory neurofeedback training.
    Chaudhary U; Vlachos I; Zimmermann JB; Espinosa A; Tonin A; Jaramillo-Gonzalez A; Khalili-Ardali M; Topka H; Lehmberg J; Friehs GM; Woodtli A; Donoghue JP; Birbaumer N
    Nat Commun; 2022 Mar; 13(1):1236. PubMed ID: 35318316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hybrid platform based on EOG and EEG signals to restore communication for patients afflicted with progressive motor neuron diseases.
    Usakli AB; Gurkan S; Aloise F; Vecchiato G; Babiloni F
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():543-6. PubMed ID: 19964228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing brain-machine interface (BMI) control of a hand exoskeleton using electrooculography (EOG).
    Witkowski M; Cortese M; Cempini M; Mellinger J; Vitiello N; Soekadar SR
    J Neuroeng Rehabil; 2014 Dec; 11():165. PubMed ID: 25510922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain computer interface with the P300 speller: Usability for disabled people with amyotrophic lateral sclerosis.
    Guy V; Soriani MH; Bruno M; Papadopoulo T; Desnuelle C; Clerc M
    Ann Phys Rehabil Med; 2018 Jan; 61(1):5-11. PubMed ID: 29024794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. eyeSay: Make Eyes Speak for ALS Patients with Deep Transfer Learning-empowered Wearable.
    Zou J; Zhang Q
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():377-381. PubMed ID: 34891313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuropsychological and neurophysiological aspects of brain-computer-interface (BCI) control in paralysis.
    Chaudhary U; Mrachacz-Kersting N; Birbaumer N
    J Physiol; 2021 May; 599(9):2351-2359. PubMed ID: 32045022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circulant Singular Spectrum Analysis and Discrete Wavelet Transform for Automated Removal of EOG Artifacts from EEG Signals.
    Yedukondalu J; Sharma LD
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772275
    [No Abstract]   [Full Text] [Related]  

  • 19. Circadian course of the P300 ERP in patients with amyotrophic lateral sclerosis - implications for brain-computer interfaces (BCI).
    Erlbeck H; Mochty U; Kübler A; Real RG
    BMC Neurol; 2017 Jan; 17(1):3. PubMed ID: 28061886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating neural correlates of locomotion transition via temporal relation of EEG and EOG-recorded eye movements.
    Mehra D; Tiwari A; Joshi D
    Comput Biol Med; 2021 May; 132():104350. PubMed ID: 33799217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.