These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 33431911)

  • 21. Toward digitally controlled catalyst architectures: Hierarchical nanoporous gold via 3D printing.
    Zhu C; Qi Z; Beck VA; Luneau M; Lattimer J; Chen W; Worsley MA; Ye J; Duoss EB; Spadaccini CM; Friend CM; Biener J
    Sci Adv; 2018 Aug; 4(8):eaas9459. PubMed ID: 30182056
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hierarchical Nanoporous Copper Architectures via 3D Printing Technique for Highly Efficient Catalysts.
    Zhang Y; Sun X; Nomura N; Fujita T
    Small; 2019 May; 15(22):e1805432. PubMed ID: 31026109
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching.
    Mohanty S; Sanger K; Heiskanen A; Trifol J; Szabo P; Dufva M; Emnéus J; Wolff A
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():180-9. PubMed ID: 26838839
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D Nanofabrication of SiOC Ceramic Structures.
    Brigo L; Schmidt JEM; Gandin A; Michieli N; Colombo P; Brusatin G
    Adv Sci (Weinh); 2018 Dec; 5(12):1800937. PubMed ID: 30581702
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Facile fabrication of micro-/nanostructured, superhydrophobic membranes with adjustable porosity by 3D printing.
    Mayoussi F; Doeven EH; Kick A; Goralczyk A; Thomann Y; Risch P; Guijt RM; Kotz F; Helmer D; Rapp BE
    J Mater Chem A Mater; 2021 Sep; 9(37):21379-21386. PubMed ID: 34603732
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanoporous thermosetting polymers.
    Raman VI; Palmese GR
    Langmuir; 2005 Feb; 21(4):1539-46. PubMed ID: 15697305
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the potential use of two-photon polymerization to 3D print chromatographic packed bed supports.
    Matheuse F; Vanmol K; Van Erps J; De Malsche W; Ottevaere H; Desmet G
    J Chromatogr A; 2022 Jan; 1663():462763. PubMed ID: 34968955
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiscale Porosity in Compressible Cryogenically 3D Printed Gels for Bone Tissue Engineering.
    Gupta D; Singh AK; Dravid A; Bellare J
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20437-20452. PubMed ID: 31081613
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Using Resin-Based 3D Printing to Build Geometrically Accurate Proxies of Porous Sedimentary Rocks.
    Ishutov S; Hasiuk FJ; Jobe D; Agar S
    Ground Water; 2018 May; 56(3):482-490. PubMed ID: 28960285
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Workflow for highly porous resorbable custom 3D printed scaffolds using medical grade polymer for large volume alveolar bone regeneration.
    Bartnikowski M; Vaquette C; Ivanovski S
    Clin Oral Implants Res; 2020 May; 31(5):431-441. PubMed ID: 31957069
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Designing Multiscale Porous Metal by Simple Dealloying with 3D Morphological Evolution Mechanism Revealed via X-ray Nano-tomography.
    Zou L; Ge M; Zhao C; Meng Q; Wang H; Liu X; Lin CH; Xiao X; Lee WK; Shen Q; Chen F; Chen-Wiegart YK
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2793-2804. PubMed ID: 31846299
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activated Carbon in the Third Dimension-3D Printing of a Tuned Porous Carbon.
    Steldinger H; Esposito A; Brunnengräber K; Gläsel J; Etzold BJM
    Adv Sci (Weinh); 2019 Oct; 6(19):1901340. PubMed ID: 31592426
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct printing of functional 3D objects using polymerization-induced phase separation.
    Deore B; Sampson KL; Lacelle T; Kredentser N; Lefebvre J; Young LS; Hyland J; Amaya RE; Tanha J; Malenfant PRL; de Haan HW; Paquet C
    Nat Commun; 2021 Jan; 12(1):55. PubMed ID: 33397901
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal-Organic Framework-Templated Biomaterials: Recent Progress in Synthesis, Functionalization, and Applications.
    Begum S; Hassan Z; Bräse S; Wöll C; Tsotsalas M
    Acc Chem Res; 2019 Jun; 52(6):1598-1610. PubMed ID: 30977634
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D-printing porosity: A new approach to creating elevated porosity materials and structures.
    Jakus AE; Geisendorfer NR; Lewis PL; Shah RN
    Acta Biomater; 2018 May; 72():94-109. PubMed ID: 29601901
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Construction by molecular dynamics modeling and simulations of the porous structures formed by dextran polymer chains attached on the surface of the pores of a base matrix: characterization of porous structures.
    Zhang X; Wang JC; Lacki KM; Liapis AI
    J Phys Chem B; 2005 Nov; 109(44):21028-39. PubMed ID: 16853725
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent Advances in Biomaterials for 3D Printing and Tissue Engineering.
    Jammalamadaka U; Tappa K
    J Funct Biomater; 2018 Mar; 9(1):. PubMed ID: 29494503
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Emulsion Inks for 3D Printing of High Porosity Materials.
    Sears NA; Dhavalikar PS; Cosgriff-Hernandez EM
    Macromol Rapid Commun; 2016 Aug; 37(16):1369-74. PubMed ID: 27305061
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis and protein adsorption of hierarchical nanoporous ultrathin fibers.
    Hong Y; Fan H; Zhang X
    J Phys Chem B; 2009 Apr; 113(17):5837-42. PubMed ID: 19344172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.