These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 33431918)
21. Preliminary Agreement on Tracking Sleep Between a Wrist-Worn Device Fitbit Alta and Consensus Sleep Diary. Liu J; Wong WT; Zwetsloot IM; Hsu YC; Tsui KL Telemed J E Health; 2019 Dec; 25(12):1189-1197. PubMed ID: 30601109 [No Abstract] [Full Text] [Related]
22. Automatic sleep-stage classification of heart rate and actigraphy data using deep and transfer learning approaches. Ma YJX; Zschocke J; Glos M; Kluge M; Penzel T; Kantelhardt JW; Bartsch RP Comput Biol Med; 2023 Sep; 163():107193. PubMed ID: 37421734 [TBL] [Abstract][Full Text] [Related]
23. Algorithms for using an activity-based accelerometer for identification of infant sleep-wake states during nap studies. Galland BC; Kennedy GJ; Mitchell EA; Taylor BJ Sleep Med; 2012 Jun; 13(6):743-51. PubMed ID: 22542788 [TBL] [Abstract][Full Text] [Related]
24. Transfer learning from ECG to PPG for improved sleep staging from wrist-worn wearables. Li Q; Li Q; Cakmak AS; Da Poian G; Bliwise DL; Vaccarino V; Shah AJ; Clifford GD Physiol Meas; 2021 May; 42(4):. PubMed ID: 33761477 [No Abstract] [Full Text] [Related]
25. Automatic identification of sleep and wakefulness using single-channel EEG and respiratory polygraphy signals for the diagnosis of obstructive sleep apnea. Sabil A; Vanbuis J; Baffet G; Feuilloy M; Le Vaillant M; Meslier N; Gagnadoux F J Sleep Res; 2019 Apr; 28(2):e12795. PubMed ID: 30478923 [TBL] [Abstract][Full Text] [Related]
26. The measurement of sleep by actigraphy: direct comparison of 2 commercially available actigraphs in a nonclinical population. Benson K; Friedman L; Noda A; Wicks D; Wakabayashi E; Yesavage J Sleep; 2004 Aug; 27(5):986-9. PubMed ID: 15453559 [TBL] [Abstract][Full Text] [Related]
27. The actigraph data analysis software: I. A novel approach to scoring and interpreting sleep-wake activity. Jean-Louis G; von Gizycki H; Zizi F; Spielman A; Hauri P; Taub H Percept Mot Skills; 1997 Aug; 85(1):207-16. PubMed ID: 9293579 [TBL] [Abstract][Full Text] [Related]
28. Multisite accelerometry for sleep and wake classification in children. Lamprecht ML; Bradley AP; Tran T; Boynton A; Terrill PI Physiol Meas; 2015 Jan; 36(1):133-47. PubMed ID: 25514194 [TBL] [Abstract][Full Text] [Related]
29. Wrist actigraphy in estimation of sleep and wake in intellectually disabled subjects with motor handicaps. Laakso ML; Leinonen L; Lindblom N; Joutsiniemi SL; Kaski M Sleep Med; 2004 Nov; 5(6):541-50. PubMed ID: 15511700 [TBL] [Abstract][Full Text] [Related]
30. Objective measures of sleep and wakefulness in patients with moderate to severe brain injury on an inpatient rehabilitation unit. Pearls and pitfalls of actigraph monitoring. Makley MJ; Monden KR; Philippus A; Tarwater PM; Newman J; Biggs J; Spier E; Weintraub A NeuroRehabilitation; 2018; 43(3):277-285. PubMed ID: 30373965 [TBL] [Abstract][Full Text] [Related]
31. The actigraph data analysis software: II. A novel approach to scoring and interpreting sleep-wake activity. Jean-Louis G; von Gizycki H; Zizi F; Spielman A; Hauri P; Taub H Percept Mot Skills; 1997 Aug; 85(1):219-26. PubMed ID: 9293580 [TBL] [Abstract][Full Text] [Related]
32. Improving Sleep Quality Assessment Using Wearable Sensors by Including Information From Postural/Sleep Position Changes and Body Acceleration: A Comparison of Chest-Worn Sensors, Wrist Actigraphy, and Polysomnography. Razjouyan J; Lee H; Parthasarathy S; Mohler J; Sharafkhaneh A; Najafi B J Clin Sleep Med; 2017 Nov; 13(11):1301-1310. PubMed ID: 28992827 [TBL] [Abstract][Full Text] [Related]
33. Detecting sleep using heart rate and motion data from multisensor consumer-grade wearables, relative to wrist actigraphy and polysomnography. Roberts DM; Schade MM; Mathew GM; Gartenberg D; Buxton OM Sleep; 2020 Jul; 43(7):. PubMed ID: 32215550 [TBL] [Abstract][Full Text] [Related]
34. Sleep and wakefulness state detection in nocturnal actigraphy based on movement information. Domingues A; Paiva T; Sanches JM IEEE Trans Biomed Eng; 2014 Feb; 61(2):426-34. PubMed ID: 24013826 [TBL] [Abstract][Full Text] [Related]
35. Estimating sleep from multisensory armband measurements: validity and reliability in teens. Roane BM; Van Reen E; Hart CN; Wing R; Carskadon MA J Sleep Res; 2015 Dec; 24(6):714-21. PubMed ID: 26126746 [TBL] [Abstract][Full Text] [Related]
36. Sleep/wake measurement using a non-contact biomotion sensor. De Chazal P; Fox N; O'Hare E; Heneghan C; Zaffaroni A; Boyle P; Smith S; O'Connell C; McNicholas WT J Sleep Res; 2011 Jun; 20(2):356-66. PubMed ID: 20704645 [TBL] [Abstract][Full Text] [Related]
37. State of the science and recommendations for using wearable technology in sleep and circadian research. de Zambotti M; Goldstein C; Cook J; Menghini L; Altini M; Cheng P; Robillard R Sleep; 2024 Apr; 47(4):. PubMed ID: 38149978 [TBL] [Abstract][Full Text] [Related]
38. Respiration amplitude analysis for REM and NREM sleep classification. Long X; Foussier J; Fonseca P; Haakma R; Aarts RM Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5017-20. PubMed ID: 24110862 [TBL] [Abstract][Full Text] [Related]
39. Sleep assessment using a passive ballistocardiography-based system: preliminary validation. Mack DC; Patrie JT; Felder RA; Suratt PM; Alwan M Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4319-22. PubMed ID: 19964353 [TBL] [Abstract][Full Text] [Related]