These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 33432100)

  • 1. A framework to identify structured behavioral patterns within rodent spatial trajectories.
    Donnarumma F; Prevete R; Maisto D; Fuscone S; Irvine EM; van der Meer MAA; Kemere C; Pezzulo G
    Sci Rep; 2021 Jan; 11(1):468. PubMed ID: 33432100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Representation of Muscle Synergies in the Primate Brain.
    Overduin SA; d'Avella A; Roh J; Carmena JM; Bizzi E
    J Neurosci; 2015 Sep; 35(37):12615-24. PubMed ID: 26377453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward a unifying framework for the modeling and identification of motor primitives.
    Chiovetto E; Salatiello A; d'Avella A; Giese MA
    Front Comput Neurosci; 2022; 16():926345. PubMed ID: 36172054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generating variability from motor primitives during infant locomotor development.
    Hinnekens E; Barbu-Roth M; Do MC; Berret B; Teulier C
    Elife; 2023 Jul; 12():. PubMed ID: 37523218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RatInABox, a toolkit for modelling locomotion and neuronal activity in continuous environments.
    George TM; Rastogi M; de Cothi W; Clopath C; Stachenfeld K; Barry C
    Elife; 2024 Feb; 13():. PubMed ID: 38334473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rodent spatial navigation: at the crossroads of cognition and movement.
    Sutherland RJ; Hamilton DA
    Neurosci Biobehav Rev; 2004 Nov; 28(7):687-97. PubMed ID: 15555678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential navigational strategies during spatial learning in a new modified version of the Oasis maze.
    Concha-Miranda M; More J; Grinspun N; Sanchez C; Paula-Lima A; Valdés JL
    Behav Brain Res; 2020 May; 385():112555. PubMed ID: 32109438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new rat-compatible robotic framework for spatial navigation behavioral experiments.
    Gianelli S; Harland B; Fellous JM
    J Neurosci Methods; 2018 Jan; 294():40-50. PubMed ID: 29113794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ventral hippocampus is involved in multi-goal obstacle-rich spatial navigation.
    Contreras M; Pelc T; Llofriu M; Weitzenfeld A; Fellous JM
    Hippocampus; 2018 Dec; 28(12):853-866. PubMed ID: 30067283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning and control of exploration primitives.
    Gordon G; Fonio E; Ahissar E
    J Comput Neurosci; 2014 Oct; 37(2):259-80. PubMed ID: 24796479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple experimentally based model using proprioceptive regulation of motor primitives captures adjusted trajectory formation in spinal frogs.
    Kargo WJ; Ramakrishnan A; Hart CB; Rome LC; Giszter SF
    J Neurophysiol; 2010 Jan; 103(1):573-90. PubMed ID: 19657082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoding movement trajectories through a T-maze using point process filters applied to place field data from rat hippocampal region CA1.
    Huang Y; Brandon MP; Griffin AL; Hasselmo ME; Eden UT
    Neural Comput; 2009 Dec; 21(12):3305-34. PubMed ID: 19764871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Barnes maze testing strategies with small and large rodent models.
    Rosenfeld CS; Ferguson SA
    J Vis Exp; 2014 Feb; (84):e51194. PubMed ID: 24637673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motor primitives of pointing movements in a three-dimensional workspace.
    Schütz C; Schack T
    Exp Brain Res; 2013 Jun; 227(3):355-65. PubMed ID: 23604576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilizing a Reconfigurable Maze System to Enhance the Reproducibility of Spatial Navigation Tests in Rodents.
    Sawatani F; Tamatsu Y; Ide K; Azechi H; Takahashi S
    J Vis Exp; 2022 Dec; (190):. PubMed ID: 36533822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of synergies arising from a theory of optimal motor behavior.
    Chhabra M; Jacobs RA
    Neural Comput; 2006 Oct; 18(10):2320-42. PubMed ID: 16907628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variants of the Morris water maze task to comparatively assess human and rodent place navigation.
    Schoenfeld R; Schiffelholz T; Beyer C; Leplow B; Foreman N
    Neurobiol Learn Mem; 2017 Mar; 139():117-127. PubMed ID: 28057502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learned parametrized dynamic movement primitives with shared synergies for controlling robotic and musculoskeletal systems.
    Rückert E; d'Avella A
    Front Comput Neurosci; 2013; 7():138. PubMed ID: 24146647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superior colliculus and active navigation: role of visual and non-visual cues in controlling cellular representations of space.
    Cooper BG; Miya DY; Mizumori SJ
    Hippocampus; 1998; 8(4):340-72. PubMed ID: 9744421
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.