BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 33432140)

  • 1. Living materials with programmable functionalities grown from engineered microbial co-cultures.
    Gilbert C; Tang TC; Ott W; Dorr BA; Shaw WM; Sun GL; Lu TK; Ellis T
    Nat Mater; 2021 May; 20(5):691-700. PubMed ID: 33432140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial cellulose spheroids as building blocks for 3D and patterned living materials and for regeneration.
    Caro-Astorga J; Walker KT; Herrera N; Lee KY; Ellis T
    Nat Commun; 2021 Aug; 12(1):5027. PubMed ID: 34413311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineered cell-to-cell signalling within growing bacterial cellulose pellicles.
    Walker KT; Goosens VJ; Das A; Graham AE; Ellis T
    Microb Biotechnol; 2019 Jul; 12(4):611-619. PubMed ID: 30461206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid Living Capsules Autonomously Produced by Engineered Bacteria.
    Birnbaum DP; Manjula-Basavanna A; Kan A; Tardy BL; Joshi NS
    Adv Sci (Weinh); 2021 Jun; 8(11):2004699. PubMed ID: 34141524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Expanded Synthetic Biology Toolkit for Gene Expression Control in Acetobacteraceae.
    Teh MY; Ooi KH; Danny Teo SX; Bin Mansoor ME; Shaun Lim WZ; Tan MH
    ACS Synth Biol; 2019 Apr; 8(4):708-723. PubMed ID: 30865830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Analysis of Bacterial Cellulose Membranes Synthesized by Chosen
    Kaczmarek M; Jędrzejczak-Krzepkowska M; Ludwicka K
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Komagataeibacter rhaeticus as an alternative bacteria for cellulose production.
    Machado RTA; Gutierrez J; Tercjak A; Trovatti E; Uahib FGM; Moreno GP; Nascimento AP; Berreta AA; Ribeiro SJL; Barud HS
    Carbohydr Polym; 2016 Nov; 152():841-849. PubMed ID: 27516336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome.
    Goyal G; Tsai SL; Madan B; DaSilva NA; Chen W
    Microb Cell Fact; 2011 Nov; 10():89. PubMed ID: 22044771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of a Genome-scale Metabolic Network of Komagataeibacter nataicola RZS01 for Cellulose Production.
    Zhang H; Ye C; Xu N; Chen C; Chen X; Yuan F; Xu Y; Yang J; Sun D
    Sci Rep; 2017 Aug; 7(1):7911. PubMed ID: 28801647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel bacterial cellulose membrane biosynthesized by a new and highly efficient producer Komagataeibacter rhaeticus TJPU03.
    He X; Meng H; Song H; Deng S; He T; Wang S; Wei D; Zhang Z
    Carbohydr Res; 2020 Jul; 493():108030. PubMed ID: 32442702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-conversion of kitchen waste into bacterial cellulose using a new multiple carbon utilizing Komagataeibacter rhaeticus: Fermentation profiles and genome-wide analysis.
    Li ZY; Azi F; Ge ZW; Liu YF; Yin XT; Dong MS
    Int J Biol Macromol; 2021 Nov; 191():211-221. PubMed ID: 34547311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose.
    Oh EJ; Jin YS
    FEMS Yeast Res; 2020 Feb; 20(1):. PubMed ID: 31917414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome sequencing and phylogenetic analysis of K1G4: a new Komagataeibacter strain producing bacterial cellulose from different carbon sources.
    La China S; Bezzecchi A; Moya F; Petroni G; Di Gregorio S; Gullo M
    Biotechnol Lett; 2020 May; 42(5):807-818. PubMed ID: 31983038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient
    Bertsch P; Etter D; Fischer P
    Food Funct; 2021 May; 12(9):4015-4020. PubMed ID: 33978026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing effectiveness of Komagataeibacter strains for producing surface-microstructured cellulose via guided assembly-based biolithography.
    Brugnoli M; Robotti F; La China S; Anguluri K; Haghighi H; Bottan S; Ferrari A; Gullo M
    Sci Rep; 2021 Sep; 11(1):19311. PubMed ID: 34588564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulosic Nanomaterial Production Via Fermentation by
    Park MS; Jung YH; Oh SY; Kim MJ; Bang WY; Lim YW
    J Microbiol Biotechnol; 2019 Apr; 29(4):617-624. PubMed ID: 30856704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological Engineered Living Materials: Growing Functional Materials with Genetically Programmable Properties.
    Gilbert C; Ellis T
    ACS Synth Biol; 2019 Jan; 8(1):1-15. PubMed ID: 30576101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol.
    Ho NW; Chen Z; Brainard AP; Sedlak M
    Adv Biochem Eng Biotechnol; 1999; 65():163-92. PubMed ID: 10533435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic biology-powered microbial co-culture strategy and application of bacterial cellulose-based composite materials.
    Jin K; Jin C; Wu Y
    Carbohydr Polym; 2022 May; 283():119171. PubMed ID: 35153021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative genomics of the Komagataeibacter strains-Efficient bionanocellulose producers.
    Ryngajłło M; Kubiak K; Jędrzejczak-Krzepkowska M; Jacek P; Bielecki S
    Microbiologyopen; 2019 May; 8(5):e00731. PubMed ID: 30365246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.