These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 3343231)

  • 1. Peptidyl sulfonium salts. A new class of protease inhibitors.
    Shaw E
    J Biol Chem; 1988 Feb; 263(6):2768-72. PubMed ID: 3343231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of cancer procoagulant by peptidyl diazomethyl ketones and peptidyl sulfonium salts.
    Falanga A; Shaw E; Donati MB; Consonni R; Barbui T; Gordon S
    Thromb Res; 1989 Jun; 54(5):389-98. PubMed ID: 2772865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Additional peptidyl diazomethyl ketones, including biotinyl derivatives, which affinity-label calpain and related cysteinyl proteinases.
    Wikstrom P; Anagli J; Angliker H; Shaw E
    J Enzyme Inhib; 1992; 6(4):259-69. PubMed ID: 1284963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diazomethyl ketone substrate derivatives as active-site-directed inhibitors of thiol proteases. Papain.
    Leary R; Larsen D; Watanabe H; Shaw E
    Biochemistry; 1977 Dec; 16(26):5857-61. PubMed ID: 588560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The synthesis and properties of peptidylmethylsulphonium salts with two cationic residues as potential inhibitors of prohormone processing.
    Zumbrunn A; Stone S; Shaw E
    Biochem J; 1988 Dec; 256(3):989-94. PubMed ID: 3223967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptidyl fluoromethyl ketones as thiol protease inhibitors.
    Shaw E; Angliker H; Rauber P; Walker B; Wikstrom P
    Biomed Biochim Acta; 1986; 45(11-12):1397-403. PubMed ID: 2953336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The properties of peptidyl diazoethanes and chloroethanes as protease inactivators.
    Wikstrom P; Kirschke H; Stone S; Shaw E
    Arch Biochem Biophys; 1989 Apr; 270(1):286-93. PubMed ID: 2930191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cysteinyl proteinases and their selective inactivation.
    Shaw E
    Adv Enzymol Relat Areas Mol Biol; 1990; 63():271-347. PubMed ID: 2407065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and analysis of new sulfonium derivatives from S-adenosyl(5')-3-methylthiopropylamine.
    Oliva A; Cacciapuoti G; Romeo G; Porcelli M
    Boll Soc Ital Biol Sper; 1979 Oct; 55(19):2019-24. PubMed ID: 554638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of lysine-containing sulphonium salts and their properties as proteinase inhibitors.
    Rauber P; Walker B; Stone S; Shaw E
    Biochem J; 1988 Mar; 250(3):871-6. PubMed ID: 2968789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active and inactive forms of the transition-state analog protease inhibitor leupeptin: explanation of the observed slow binding of leupeptin to cathepsin B and papain.
    Schultz RM; Varma-Nelson P; Ortiz R; Kozlowski KA; Orawski AT; Pagast P; Frankfater A
    J Biol Chem; 1989 Jan; 264(3):1497-507. PubMed ID: 2912969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptidyl epoxides extended in the P' direction as cysteine protease inhibitors: effect on affinity and mechanism of inhibition.
    Perlman N; Hazan M; Shokhen M; Albeck A
    Bioorg Med Chem; 2008 Oct; 16(19):9032-9. PubMed ID: 18789705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The synthesis, kinetic characterization and application of a novel biotinylated affinity label for cathepsin B.
    Walker B; Cullen BM; Kay G; Halliday IM; McGinty A; Nelson J
    Biochem J; 1992 Apr; 283 ( Pt 2)(Pt 2):449-53. PubMed ID: 1575690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The affinity-labelling of cathepsin S with peptidyl diazomethyl ketones. Comparison with the inhibition of cathepsin L and calpain.
    Shaw E; Mohanty S; Colic A; Stoka V; Turk V
    FEBS Lett; 1993 Nov; 334(3):340-2. PubMed ID: 8243643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulphonium analogue of lecithin in diatoms.
    Anderson R; Kates M; Volcani BE
    Nature; 1976 Sep; 263(5572):51-3. PubMed ID: 958463
    [No Abstract]   [Full Text] [Related]  

  • 16. Synthesis of histidine-containing dipeptide affinity-labelling agents. Relative inactivation rates of cathepsins B and L.
    Angliker H; Zumbrunn A; Shaw E
    Int J Pept Protein Res; 1991 Oct; 38(4):346-9. PubMed ID: 1797709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative behaviour of calpain and cathepsin B toward peptidyl acyloxymethyl ketones, sulphonium methyl ketones and other potential inhibitors of cysteine proteinases.
    Pliura DH; Bonaventura BJ; Smith RA; Coles PJ; Krantz A
    Biochem J; 1992 Dec; 288 ( Pt 3)(Pt 3):759-62. PubMed ID: 1471990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A general framework of cysteine-proteinase mechanism deduced from studies on enzymes with structurally different analogous catalytic-site residues Asp-158 and -161 (papain and actinidin), Gly-196 (cathepsin B) and Asn-165 (cathepsin H). Kinetic studies up to pH 8 of the hydrolysis of N-alpha-benzyloxycarbonyl-L-arginyl-L-arginine 2-naphthylamide catalysed by cathepsin B and of L-arginine 2-naphthylamide catalysed by cathepsin H.
    Willenbrock F; Brocklehurst K
    Biochem J; 1985 Apr; 227(2):521-8. PubMed ID: 3890831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding specificity of papain and cathepsin B.
    Akahane K; Umeyama H
    Enzyme; 1986; 36(1-2):141-9. PubMed ID: 3539588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissociation of ionizing groups in the binding cleft inversely controls the endo- and exopeptidase activities of cathepsin B.
    Polgár L; Csoma C
    J Biol Chem; 1987 Oct; 262(30):14448-53. PubMed ID: 3312190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.