BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 3343233)

  • 1. Domain interaction in rabbit muscle pyruvate kinase. II. Small angle neutron scattering and computer simulation.
    Consler TG; Uberbacher EC; Bunick GJ; Liebman MN; Lee JC
    J Biol Chem; 1988 Feb; 263(6):2794-801. PubMed ID: 3343233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling of the serine-proteinase fold by X-ray and neutron scattering and sedimentation analyses: occurrence of the fold in factor D of the complement system.
    Perkins SJ; Smith KF; Kilpatrick JM; Volanakis JE; Sim RB
    Biochem J; 1993 Oct; 295 ( Pt 1)(Pt 1):87-99. PubMed ID: 8216242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in small-angle X-ray scattering parameters observed upon binding of ligand to rabbit muscle pyruvate kinase are not correlated with allosteric transitions.
    Fenton AW; Williams R; Trewhella J
    Biochemistry; 2010 Aug; 49(33):7202-9. PubMed ID: 20712377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic nonideality as a probe of allosteric mechanisms: preexistence of the isomerization equilibrium for rabbit muscle pyruvate kinase.
    Harris SJ; Winzor DJ
    Arch Biochem Biophys; 1988 Sep; 265(2):458-65. PubMed ID: 3421719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. L-phenylalanine induced changes of sulfhydryl reactivity in rabbit muscle pyruvate kinase.
    Kwan CY; Davis RC
    Can J Biochem; 1981 Feb; 59(2):92-9. PubMed ID: 7237230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible solvent denaturation of rabbit muscle pyruvate kinase.
    Doster W; Hess B
    Biochemistry; 1981 Feb; 20(4):772-80. PubMed ID: 7213611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic linkages in rabbit muscle pyruvate kinase: kinetic, equilibrium, and structural studies.
    Oberfelder RW; Lee LL; Lee JC
    Biochemistry; 1984 Aug; 23(17):3813-21. PubMed ID: 6487576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of rabbit muscle pyruvate kinase complexed with Mn2+, K+, and pyruvate.
    Larsen TM; Laughlin LT; Holden HM; Rayment I; Reed GH
    Biochemistry; 1994 May; 33(20):6301-9. PubMed ID: 8193145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of primary sequence differences on the global structure and function of an enzyme: a study of pyruvate kinase isozymes.
    Consler TG; Woodard SH; Lee JC
    Biochemistry; 1989 Oct; 28(22):8756-64. PubMed ID: 2605219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural comparisons of the native and reactive-centre-cleaved forms of alpha 1-antitrypsin by neutron- and X-ray-scattering in solution.
    Smith KF; Harrison RA; Perkins SJ
    Biochem J; 1990 Apr; 267(1):203-12. PubMed ID: 2327980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and functional energetic linkages in allosteric regulation of muscle pyruvate kinase.
    Lee JC; Herman P
    Methods Enzymol; 2011; 488():185-217. PubMed ID: 21195229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 7Li, 31P, and 1H NMR studies of interactions between ATP, monovalent cations, and divalent cation sites on rabbit muscle pyruvate kinase.
    Van Divender JM; Grisham CM
    J Biol Chem; 1985 Nov; 260(26):14060-9. PubMed ID: 2997192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular modelling of the domain structure of factor I of human complement by X-ray and neutron solution scattering.
    Perkins SJ; Smith KF; Sim RB
    Biochem J; 1993 Oct; 295 ( Pt 1)(Pt 1):101-8. PubMed ID: 8216202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand-induced domain movement in pyruvate kinase: structure of the enzyme from rabbit muscle with Mg2+, K+, and L-phospholactate at 2.7 A resolution.
    Larsen TM; Benning MM; Wesenberg GE; Rayment I; Reed GH
    Arch Biochem Biophys; 1997 Sep; 345(2):199-206. PubMed ID: 9308890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular modeling of the domain structure of C9 of human complement by neutron and X-ray solution scattering.
    Smith KF; Harrison RA; Perkins SJ
    Biochemistry; 1992 Jan; 31(3):754-64. PubMed ID: 1731932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Domain interaction in rabbit muscle pyruvate kinase. I. Effects of ligands on protein denaturation induced by guanidine hydrochloride.
    Consler TG; Lee JC
    J Biol Chem; 1988 Feb; 263(6):2787-93. PubMed ID: 3343232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic linkages in rabbit muscle pyruvate kinase: analysis of experimental data by a two-state model.
    Oberfelder RW; Barisas BG; Lee JC
    Biochemistry; 1984 Aug; 23(17):3822-6. PubMed ID: 6487577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the bis(Mg2+)-ATP-oxalate complex of the rabbit muscle pyruvate kinase at 2.1 A resolution: ATP binding over a barrel.
    Larsen TM; Benning MM; Rayment I; Reed GH
    Biochemistry; 1998 May; 37(18):6247-55. PubMed ID: 9572839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution structure of phosphorylase kinase studied using small-angle X-ray and neutron scattering.
    Henderson SJ; Newsholme P; Heidorn DB; Mitchell R; Seeger PA; Walsh DA; Trewhella J
    Biochemistry; 1992 Jan; 31(2):437-42. PubMed ID: 1731902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. L-Phenylalanine inhibition of muscle pyruvate kinase.
    Palmer TN; Odedra BR
    Biosci Rep; 1982 Oct; 2(10):825-33. PubMed ID: 7171746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.