These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 33432359)

  • 1. The Relationship between the Misfolding Avoidance Hypothesis and Protein Evolutionary Rates in the Light of Empirical Evidence.
    Usmanova DR; Plata G; Vitkup D
    Genome Biol Evol; 2021 Feb; 13(2):. PubMed ID: 33432359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein Melting Temperature Cannot Fully Assess Whether Protein Folding Free Energy Underlies the Universal Abundance-Evolutionary Rate Correlation Seen in Proteins.
    Razban RM
    Mol Biol Evol; 2019 Sep; 36(9):1955-1963. PubMed ID: 31093676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Avoidance of protein unfolding constrains protein stability in long-term evolution.
    Razban RM; Dasmeh P; Serohijos AWR; Shakhnovich EI
    Biophys J; 2021 Jun; 120(12):2413-2424. PubMed ID: 33932438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secreted Proteins Defy the Expression Level-Evolutionary Rate Anticorrelation.
    Feyertag F; Berninsone PM; Alvarez-Ponce D
    Mol Biol Evol; 2017 Mar; 34(3):692-706. PubMed ID: 28007979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein Stability and Avoidance of Toxic Misfolding Do Not Explain the Sequence Constraints of Highly Expressed Proteins.
    Plata G; Vitkup D
    Mol Biol Evol; 2018 Mar; 35(3):700-703. PubMed ID: 29309671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The rate of the molecular clock and the cost of gratuitous protein synthesis.
    Plata G; Gottesman ME; Vitkup D
    Genome Biol; 2010; 11(9):R98. PubMed ID: 20920270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chaperone client proteins evolve slower than non-client proteins.
    Victor MP; Acharya D; Chakraborty S; Ghosh TC
    Funct Integr Genomics; 2020 Sep; 20(5):621-631. PubMed ID: 32377887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular crowding imposes global constraints on the chemistry and evolution of proteomes.
    Levy ED; De S; Teichmann SA
    Proc Natl Acad Sci U S A; 2012 Dec; 109(50):20461-6. PubMed ID: 23184996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biophysical Models of Protein Evolution: Understanding the Patterns of Evolutionary Sequence Divergence.
    Echave J; Wilke CO
    Annu Rev Biophys; 2017 May; 46():85-103. PubMed ID: 28301766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural selection for kinetic stability is a likely origin of correlations between mutational effects on protein energetics and frequencies of amino acid occurrences in sequence alignments.
    Godoy-Ruiz R; Ariza F; Rodriguez-Larrea D; Perez-Jimenez R; Ibarra-Molero B; Sanchez-Ruiz JM
    J Mol Biol; 2006 Oct; 362(5):966-78. PubMed ID: 16935299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Why proteins evolve at different rates: the functional hypothesis versus the mistranslation-induced protein misfolding hypothesis.
    Park D; Choi SS
    FEBS Lett; 2009 Apr; 583(7):1053-9. PubMed ID: 19254718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biophysics of protein evolution and evolutionary protein biophysics.
    Sikosek T; Chan HS
    J R Soc Interface; 2014 Nov; 11(100):20140419. PubMed ID: 25165599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of translational error-induced and error-free misfolding on the rate of protein evolution.
    Yang JR; Zhuang SM; Zhang J
    Mol Syst Biol; 2010 Oct; 6():421. PubMed ID: 20959819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Derivation of a solubility condition for proteins from an analysis of the competition between folding and aggregation.
    Pechmann S; Vendruscolo M
    Mol Biosyst; 2010 Dec; 6(12):2490-7. PubMed ID: 20957252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein biophysics explains why highly abundant proteins evolve slowly.
    Serohijos AW; Rimas Z; Shakhnovich EI
    Cell Rep; 2012 Aug; 2(2):249-56. PubMed ID: 22938865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein aggregation profile of the bacterial cytosol.
    de Groot NS; Ventura S
    PLoS One; 2010 Feb; 5(2):e9383. PubMed ID: 20195530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contact density affects protein evolutionary rate from bacteria to animals.
    Zhou T; Drummond DA; Wilke CO
    J Mol Evol; 2008 Apr; 66(4):395-404. PubMed ID: 18379715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the effect of secondary structures and aggregation on human protein folding class evolution.
    Begum T; Ghosh TC
    J Mol Evol; 2010 Jul; 71(1):60-9. PubMed ID: 20614111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the role of aggregation prone regions in protein evolution, stability, and enzymatic catalysis: insights from diverse analyses.
    Buck PM; Kumar S; Singh SK
    PLoS Comput Biol; 2013; 9(10):e1003291. PubMed ID: 24146608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Point mutations in protein globular domains: contributions from function, stability and misfolding.
    Sánchez IE; Tejero J; Gómez-Moreno C; Medina M; Serrano L
    J Mol Biol; 2006 Oct; 363(2):422-32. PubMed ID: 16978645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.