These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 33432455)
1. Colorimetric recognition of aromatic amino acid enantiomers by gluconic acid-capped gold nanoparticles. Yang J; Li X; Du Y; Ma M; Zhang L; Zhang J; Li P Amino Acids; 2021 Feb; 53(2):195-204. PubMed ID: 33432455 [TBL] [Abstract][Full Text] [Related]
2. Visual chiral recognition of tryptophan enantiomers using unmodified gold nanoparticles as colorimetric probes. Zhang L; Xu C; Liu C; Li B Anal Chim Acta; 2014 Jan; 809():123-7. PubMed ID: 24418142 [TBL] [Abstract][Full Text] [Related]
3. Colorimetric chiral recognition of D/L-phenylalanine based on triangular silver nanoplates. Wu P; Hu F; Wang R; Gao L; Huang T; Xin Y; He H Amino Acids; 2018 Sep; 50(9):1269-1278. PubMed ID: 29961142 [TBL] [Abstract][Full Text] [Related]
4. A universal strategy for visual chiral recognition of α-amino acids with L-tartaric acid-capped gold nanoparticles as colorimetric probes. Song G; Zhou F; Xu C; Li B Analyst; 2016 Feb; 141(4):1257-65. PubMed ID: 26759834 [TBL] [Abstract][Full Text] [Related]
5. Visual chiral recognition of D/L-leucine using cube-shaped gold nanoparticles as colorimetric probes. Zhou X; Xu C; Jin Y; Li B Spectrochim Acta A Mol Biomol Spectrosc; 2019 Dec; 223():117263. PubMed ID: 31247465 [TBL] [Abstract][Full Text] [Related]
6. L-cysteine capped silver nanoparticles as chiral recognition sensor for ketoprofen enantiomers. Obaid A; Mohd Jamil AK; Saharin SM; Mohamad S Chirality; 2021 Nov; 33(11):810-823. PubMed ID: 34486177 [TBL] [Abstract][Full Text] [Related]
7. PEGylated NALC-functionalized gold nanoparticles for colorimetric discrimination of chiral tyrosine. Chen XY; Ha W; Jin XJ; Shi YP Analyst; 2020 Nov; 145(22):7397-7405. PubMed ID: 32935670 [TBL] [Abstract][Full Text] [Related]
8. Lab-in-a-syringe using gold nanoparticles for rapid colorimetric chiral discrimination of enantiomers. Zor E; Bekar N Biosens Bioelectron; 2017 May; 91():211-216. PubMed ID: 28011416 [TBL] [Abstract][Full Text] [Related]
9. Colorimetric discrimination and spectroscopic detection of tyrosine enantiomers based on melamine induced aggregation of l-cysteine/Au nanoparticles. Chen H; Luo Y; Cai W; Xu L; Li J; Kong Y Talanta; 2024 May; 271():125758. PubMed ID: 38340415 [TBL] [Abstract][Full Text] [Related]
10. A Rapid Colorimetric Sensor of Clenbuterol Based on Cysteamine-Modified Gold Nanoparticles. Kang J; Zhang Y; Li X; Miao L; Wu A ACS Appl Mater Interfaces; 2016 Jan; 8(1):1-5. PubMed ID: 26673452 [TBL] [Abstract][Full Text] [Related]
11. Naked-eye rapid recognition of tyrosine enantiomers using silver triangular nanoplates as colorimetric probe. Zhang M; Shi X; Zhang G; Xu C; Li B Spectrochim Acta A Mol Biomol Spectrosc; 2024 Mar; 309():123874. PubMed ID: 38217992 [TBL] [Abstract][Full Text] [Related]
12. Development of extremely stable dual functionalized gold nanoparticles for effective colorimetric detection of clenbuterol and ractopamine in human urine samples. Simon T; Shellaiah M; Steffi P; Sun KW; Ko FH Anal Chim Acta; 2018 Sep; 1023():96-104. PubMed ID: 29754612 [TBL] [Abstract][Full Text] [Related]
13. Chiral recognition of tryptophan enantiomers using chitosan-capped silver nanoparticles: Scanometry and spectrophotometry approaches. Jafari M; Tashkhourian J; Absalan G Talanta; 2018 Feb; 178():870-878. PubMed ID: 29136908 [TBL] [Abstract][Full Text] [Related]
14. Smartphone-based colorimetric chiral recognition of ibuprofen using aptamers-capped gold nanoparticles. Ping J; He Z; Liu J; Xie X Electrophoresis; 2018 Feb; 39(3):486-495. PubMed ID: 29193172 [TBL] [Abstract][Full Text] [Related]
15. Tyrosine- and tryptophan-coated gold nanoparticles inhibit amyloid aggregation of insulin. Dubey K; Anand BG; Badhwar R; Bagler G; Navya PN; Daima HK; Kar K Amino Acids; 2015 Dec; 47(12):2551-60. PubMed ID: 26193769 [TBL] [Abstract][Full Text] [Related]
16. Molecule-specific vibration-based chiral differentiation of Raman spectra using cysteine modified gold nanoparticles: the cases of tyrosine and phenylalanine. Sun X; Wang N; He Y; Kong H; Yang H; Liu X J Mater Chem B; 2021 Sep; 9(35):7167-7171. PubMed ID: 34259301 [TBL] [Abstract][Full Text] [Related]
17. Recyclable colorimetric sensor of Cr Sang F; Li X; Zhang Z; Liu J; Chen G Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar; 193():109-116. PubMed ID: 29223455 [TBL] [Abstract][Full Text] [Related]
18. A Simple and Green Route for Room-Temperature Synthesis of Gold Nanoparticles and Selective Colorimetric Detection of Cysteine. Bagci PO; Wang YC; Gunasekaran S J Food Sci; 2015 Sep; 80(9):N2071-8. PubMed ID: 26239641 [TBL] [Abstract][Full Text] [Related]
19. β-CD@AgNPs with peroxisase-like activity for colorimetric determination of chiral tryptophan. Liu Y; Sun M; Zhou Z; Luo D; Xu G; Xiong Z Spectrochim Acta A Mol Biomol Spectrosc; 2024 Dec; 323():124871. PubMed ID: 39096670 [TBL] [Abstract][Full Text] [Related]
20. Colorimetric sensor array based on gold nanoparticles and amino acids for identification of toxic metal ions in water. Sener G; Uzun L; Denizli A ACS Appl Mater Interfaces; 2014; 6(21):18395-400. PubMed ID: 25330256 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]