These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Localized corrosion of 316L stainless steel with SiO2-CaO films obtained by means of sol-gel treatment. Vallet-Regí M; Izquierdo-Barba I; Gil FJ J Biomed Mater Res A; 2003 Nov; 67(2):674-8. PubMed ID: 14566812 [TBL] [Abstract][Full Text] [Related]
24. Electrochemical study of Type 304 and 316L stainless steels in simulated body fluids and cell cultures. Tang YC; Katsuma S; Fujimoto S; Hiromoto S Acta Biomater; 2006 Nov; 2(6):709-15. PubMed ID: 16935040 [TBL] [Abstract][Full Text] [Related]
25. Release of hexavalent chromium from corrosion of stainless steel and cobalt-chromium alloys. Merritt K; Brown SA J Biomed Mater Res; 1995 May; 29(5):627-33. PubMed ID: 7622548 [TBL] [Abstract][Full Text] [Related]
26. Stability of passivated 316L stainless steel oxide films for cardiovascular stents. Shih CC; Shih CM; Chou KY; Lin SJ; Su YY J Biomed Mater Res A; 2007 Mar; 80(4):861-73. PubMed ID: 17072844 [TBL] [Abstract][Full Text] [Related]
27. Isolation of serum protein organometallic corrosion products from 316LSS and HS-21 in vitro and in vivo. Woodman JL; Black J; Jiminez SA J Biomed Mater Res; 1984 Jan; 18(1):99-114. PubMed ID: 6699034 [TBL] [Abstract][Full Text] [Related]
28. XPS and AES analysis of passive films on Fe-25Cr-X (X = Mo, V, Si and Nb) model alloys. Hubschmid C; Landolt D; Mathieu HJ Anal Bioanal Chem; 1995 Oct; 353(3-4):234-9. PubMed ID: 15048473 [TBL] [Abstract][Full Text] [Related]
29. In vitro studies of fretting corrosion of orthopaedic materials. Brown SA; Hughes PJ; Merritt K J Orthop Res; 1988; 6(4):572-9. PubMed ID: 3379510 [TBL] [Abstract][Full Text] [Related]
30. In vivo behavior of a high performance duplex stainless steel. Cigada A; De Santis G; Gatti AM; Roos A; Zaffe D J Appl Biomater; 1993; 4(1):39-46. PubMed ID: 10148344 [TBL] [Abstract][Full Text] [Related]
31. Anodized titanium and stainless steel in contact with CFRP: an electrochemical approach considering galvanic corrosion. Mueller Y; Tognini R; Mayer J; Virtanen S J Biomed Mater Res A; 2007 Sep; 82(4):936-46. PubMed ID: 17335021 [TBL] [Abstract][Full Text] [Related]
32. Dissolution of stainless steel in artificial saliva. Lakatos-Varsányi M; Wegrelius L; Olefjord I Int J Oral Maxillofac Implants; 1997; 12(3):387-98. PubMed ID: 9197105 [TBL] [Abstract][Full Text] [Related]
33. [Study on electrochemical mechanism of coronary stent used austenitic stainless steel in flowing artificial body fluid]. Liang C; Guo L; Chen W; Wang H Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Aug; 22(4):730-3. PubMed ID: 16156260 [TBL] [Abstract][Full Text] [Related]
34. In vivo and in vitro studies of the stress-corrosion cracking behavior of surgical implant alloys. Bundy KJ; Marek M; Hochman RF J Biomed Mater Res; 1983 May; 17(3):467-87. PubMed ID: 6863350 [TBL] [Abstract][Full Text] [Related]
35. Comparison of 316LVM and MP35N alloys as charge injection electrodes. Cogan SF; Jones GS; Hills DV; Walter JS; Riedy LW J Biomed Mater Res; 1994 Feb; 28(2):233-40. PubMed ID: 8207036 [TBL] [Abstract][Full Text] [Related]
36. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials. Yeung KW; Poon RW; Chu PK; Chung CY; Liu XY; Lu WW; Chan D; Chan SC; Luk KD; Cheung KM J Biomed Mater Res A; 2007 Aug; 82(2):403-14. PubMed ID: 17295246 [TBL] [Abstract][Full Text] [Related]
37. [Effects of skeletal muscle proteins on corrosion of stainless steels]. Rojas C; Lago ME Acta Cient Venez; 2002; 53(2):156-63. PubMed ID: 12516369 [TBL] [Abstract][Full Text] [Related]
38. Electrochemical corrosion in saline and serum. Brown SA; Merritt K J Biomed Mater Res; 1980 Mar; 14(2):173-5. PubMed ID: 7358745 [No Abstract] [Full Text] [Related]
39. Should the galvanic combination of titanium and stainless steel surgical implants be avoided? Høl PJ; Mølster A; Gjerdet NR Injury; 2008 Feb; 39(2):161-9. PubMed ID: 18054018 [TBL] [Abstract][Full Text] [Related]
40. The influences of electrical potential and surface finish on the fatigue life of surgical implant materials. Bapna MS; Lautenschlager EP; Moser JB J Biomed Mater Res; 1975 Nov; 9(6):611-21. PubMed ID: 1184609 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]