These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 33432788)
1. Characterization of nanosensitive multifractality in submicron scale tissue morphology and its alteration in tumor progression. Das N; Alexandrov S; Gilligan KE; Dwyer RM; Saager RB; Ghosh N; Leahy M J Biomed Opt; 2021 Jan; 26(1):. PubMed ID: 33432788 [TBL] [Abstract][Full Text] [Related]
2. Tissue multifractality and Born approximation in analysis of light scattering: a novel approach for precancers detection. Das N; Chatterjee S; Kumar S; Pradhan A; Panigrahi P; Vitkin IA; Ghosh N Sci Rep; 2014 Aug; 4():6129. PubMed ID: 25139583 [TBL] [Abstract][Full Text] [Related]
3. Characterization of nanosensitive multifractality in submicron scale tissue morphology and its alteration in tumor progression (Erratum). Das N; Alexandrov S; Gilligan KE; Dwyer RM; Saager RB; Ghosh N; Leahy M J Biomed Opt; 2021 Jan; 26(1):. PubMed ID: 33517589 [TBL] [Abstract][Full Text] [Related]
4. Investigation of alterations in multifractality in optical coherence tomographic images of in vivo human retina. Das NK; Mukhopadhyay S; Ghosh N; Chhablani J; Richhariya A; Divakar Rao K; Sahoo NK J Biomed Opt; 2016 Sep; 21(9):96004. PubMed ID: 27618288 [TBL] [Abstract][Full Text] [Related]
5. Mueller matrix approach for probing multifractality in the underlying anisotropic connective tissue. Das NK; Dey R; Ghosh N J Biomed Opt; 2016 Sep; 21(9):95004. PubMed ID: 27668951 [TBL] [Abstract][Full Text] [Related]
6. Skin cancer margin detection using nanosensitive optical coherence tomography and a comparative study with confocal microscopy. Dey R; Alexandrov S; Owens P; Kelly J; Phelan S; Leahy M Biomed Opt Express; 2022 Nov; 13(11):5654-5666. PubMed ID: 36733740 [TBL] [Abstract][Full Text] [Related]
7. Multiscale assessment of the degree of multifractality for physiological time series. Faini A; Parati G; Castiglioni P Philos Trans A Math Phys Eng Sci; 2021 Dec; 379(2212):20200254. PubMed ID: 34689623 [TBL] [Abstract][Full Text] [Related]
8. Probing multifractality in tissue refractive index: prospects for precancer detection. Das N; Chatterjee S; Soni J; Jagtap J; Pradhan A; Sengupta TK; Panigrahi PK; Vitkin IA; Ghosh N Opt Lett; 2013 Jan; 38(2):211-3. PubMed ID: 23454965 [TBL] [Abstract][Full Text] [Related]
9. Two dimensional multifractal detrended fluctuation analysis of low coherence images for diagnosis of cervical pre-cancer. Sahoo GR; Dey R; Das N; Ghosh N; Pradhan A Biomed Phys Eng Express; 2020 Feb; 6(2):025011. PubMed ID: 33438637 [TBL] [Abstract][Full Text] [Related]
10. Multifractal analysis of uterine electromyography signals to differentiate term and preterm conditions. Punitha N; Ramakrishnan S Proc Inst Mech Eng H; 2019 Mar; 233(3):362-371. PubMed ID: 30706756 [TBL] [Abstract][Full Text] [Related]
11. Nanosensitive optical coherence tomography to assess wound healing within the cornea. Lal C; Alexandrov S; Rani S; Zhou Y; Ritter T; Leahy M Biomed Opt Express; 2020 Jul; 11(7):3407-3422. PubMed ID: 33014541 [TBL] [Abstract][Full Text] [Related]
12. Tissue multifractality and hidden Markov model based integrated framework for optimum precancer detection. Mukhopadhyay S; Das NK; Kurmi I; Pradhan A; Ghosh N; Panigrahi PK J Biomed Opt; 2017 Oct; 22(10):1-8. PubMed ID: 29052373 [TBL] [Abstract][Full Text] [Related]
13. Nanosensitive optical coherence tomography for detecting structural changes in stem cells. Arangath A; Duffy N; Alexandrov S; James S; Neuhaus K; Murphy M; Leahy M Biomed Opt Express; 2023 Apr; 14(4):1411-1427. PubMed ID: 37078060 [TBL] [Abstract][Full Text] [Related]
14. Multifractal Analysis of Uterine Electromyography Signals for the Assessment of Progression of Pregnancy in Term Conditions. Namadurai P; Padmanabhan V; Swaminathan R IEEE J Biomed Health Inform; 2019 Sep; 23(5):1972-1979. PubMed ID: 30369459 [TBL] [Abstract][Full Text] [Related]
15. Multifractal detrended fluctuation analysis of human gait diseases. Dutta S; Ghosh D; Chatterjee S Front Physiol; 2013; 4():274. PubMed ID: 24109454 [TBL] [Abstract][Full Text] [Related]
16. Multifractal behavior of an air pollutant time series and the relevance to the predictability. Dong Q; Wang Y; Li P Environ Pollut; 2017 Mar; 222():444-457. PubMed ID: 28012664 [TBL] [Abstract][Full Text] [Related]
17. Multifractality of Unperturbed and Asymmetric Locomotion. Ducharme SW; van Emmerik REA J Mot Behav; 2019; 51(4):394-405. PubMed ID: 30204567 [TBL] [Abstract][Full Text] [Related]
18. Evidence of multifractality from emerging European stock markets. Caraiani P PLoS One; 2012; 7(7):e40693. PubMed ID: 22815792 [TBL] [Abstract][Full Text] [Related]
19. Wavelet versus detrended fluctuation analysis of multifractal structures. Oświecimka P; Kwapień J; Drozdz S Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):016103. PubMed ID: 16907147 [TBL] [Abstract][Full Text] [Related]
20. Self-similarity and multifractality in human brain activity: A wavelet-based analysis of scale-free brain dynamics. La Rocca D; Zilber N; Abry P; van Wassenhove V; Ciuciu P J Neurosci Methods; 2018 Nov; 309():175-187. PubMed ID: 30213548 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]