BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 3343295)

  • 1. Brain oxidative metabolism of the newborn dog: correlation between 31P NMR spectroscopy and pyridine nucleotide redox state.
    Mayevsky A; Nioka S; Subramanian VH; Chance B
    J Cereb Blood Flow Metab; 1988 Apr; 8(2):201-7. PubMed ID: 3343295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cerebral energy metabolism and oxygen state during hypoxia in neonate and adult dogs.
    Nioka S; Chance B; Smith DS; Mayevsky A; Reilly MP; Alter C; Asakura T
    Pediatr Res; 1990 Jul; 28(1):54-62. PubMed ID: 2377397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative phosphorylation system during steady-state hypoxia in the dog brain.
    Nioka S; Smith DS; Chance B; Subramanian HV; Butler S; Katzenberg M
    J Appl Physiol (1985); 1990 Jun; 68(6):2527-35. PubMed ID: 2384431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain high energy phosphate responses to alcohol exposure in neonatal rats: an in vivo 31P-NMR study.
    Cudd TA; Wasser JS; Chen WJ; West JR
    Alcohol Clin Exp Res; 2000 Jun; 24(6):865-72. PubMed ID: 10888076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High energy phosphate metabolism in experimental permanent focal cerebral ischemia: an in vivo 31P magnetic resonance spectroscopy study.
    Germano IM; Pitts LH; Berry I; De Armond SJ
    J Cereb Blood Flow Metab; 1988 Feb; 8(1):24-31. PubMed ID: 3339105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of cerebral energy metabolism in newborn infants by phosphorus nuclear magnetic resonance spectroscopy.
    Hope PL; Reynolds EO
    Clin Perinatol; 1985 Feb; 12(1):261-75. PubMed ID: 3978989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlated in vivo 31P-NMR and NADH fluorometric studies on gerbil brain in graded hypoxia and hyperoxia.
    Gyulai L; Chance B; Ligeti L; McDonald G; Cone J
    Am J Physiol; 1988 May; 254(5 Pt 1):C699-708. PubMed ID: 3364555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen dependency of cerebral oxidative phosphorylation in newborn piglets.
    Springett R; Wylezinska M; Cady EB; Cope M; Delpy DT
    J Cereb Blood Flow Metab; 2000 Feb; 20(2):280-9. PubMed ID: 10698065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [31P-NMR analysis of high energy phosphorous compounds (ATP and phosphocreatine) in the living rat brain--effects of halothane anesthesia and a hypoxic condition].
    Yuasa T; Miyatake T; Kuwabara T; Umeda M; Eguchi K
    No To Shinkei; 1983 Nov; 35(11):1089-95. PubMed ID: 6661335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of postischemic cerebral energy metabolism in cat by 31P NMR: the cumulative effects of secondary hypoxia and ischemia.
    Alger JR; Brunetti A; Nagashima G; Hossmann KA
    J Cereb Blood Flow Metab; 1989 Aug; 9(4):506-14. PubMed ID: 2738116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic changes in Japanese medaka (Oryzias latipes) during embryogenesis and hypoxia as determined by in vivo 31P NMR.
    Pincetich CA; Viant MR; Hinton DE; Tjeerdema RS
    Comp Biochem Physiol C Toxicol Pharmacol; 2005 Jan; 140(1):103-13. PubMed ID: 15792629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy metabolism of the heart and the liver in brain-dead dogs as assessed by 31P NMR spectroscopy.
    Kitai T; Tanaka A; Terasaki M; Okamoto R; Ozawa K; Morikawa S; Inubushi T
    J Surg Res; 1993 Dec; 55(6):599-606. PubMed ID: 8246493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain stem energy metabolism response to acute hypoxia in anaesthetized rats: a 31P NMR study.
    Piérard C; Champagnat J; Denavit-Saubie M; Gillet B; Beloeil JC; Guezennec CY; Barrère B; Pérès M
    Neuroreport; 1995 Dec; 7(1):281-5. PubMed ID: 8742470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperbaric oxygenation affects rat brain function after carbon monoxide exposure.
    Rogatsky GG; Meilin S; Zarchin N; Thom SR; Mayevsky A
    Undersea Hyperb Med; 2002; 29(1):50-8. PubMed ID: 12507185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The interrelation between brain PO2 and NADH oxidation-reduction state in the gerbil.
    Mayevsky A; Lebourdais S; Chance B
    J Neurosci Res; 1980; 5(3):173-82. PubMed ID: 7401196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does the redox state of cytochrome aa3 reflect brain energy level during hypoxia? Simultaneous measurements by near infrared spectrophotometry and 31P nuclear magnetic resonance spectroscopy.
    Matsumoto H; Oda T; Hossain MA; Yoshimura N
    Anesth Analg; 1996 Sep; 83(3):513-8. PubMed ID: 8780272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of bilirubin on brain energy metabolism during hyperosmolar opening of the blood-brain barrier: an in vivo study using 31P nuclear magnetic resonance spectroscopy.
    Ives NK; Bolas NM; Gardiner RM
    Pediatr Res; 1989 Oct; 26(4):356-61. PubMed ID: 2797949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebral energy metabolism measured in vivo by 31P-NMR in middle cerebral artery occlusion in the cat--relation to severity of stroke.
    Komatsumoto S; Nioka S; Greenberg JH; Yoshizaki K; Subramanian VH; Chance B; Reivich M
    J Cereb Blood Flow Metab; 1987 Oct; 7(5):557-62. PubMed ID: 3654795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The NAD+ /NADH redox state in astrocytes: independent control of the NAD+ and NADH content.
    Wilhelm F; Hirrlinger J
    J Neurosci Res; 2011 Dec; 89(12):1956-64. PubMed ID: 21488092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unique aspects of human newborn cerebral metabolism evaluated with phosphorus nuclear magnetic resonance spectroscopy.
    Younkin DP; Delivoria-Papadopoulos M; Leonard JC; Subramanian VH; Eleff S; Leigh JS; Chance B
    Ann Neurol; 1984 Nov; 16(5):581-6. PubMed ID: 6508240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.