BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 3343295)

  • 21. Redox state of near infrared spectroscopy-measured cytochrome aa(3) correlates with delayed cerebral energy failure following perinatal hypoxia-ischaemia in the newborn pig.
    Peeters-Scholte C; van den Tweel E; Groenendaal F; van Bel F
    Exp Brain Res; 2004 May; 156(1):20-6. PubMed ID: 14689136
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vivo studies of energy metabolism in experimental cerebral ischemia using topical magnetic resonance. Changes in 31P-nuclear magnetic resonance spectra compared with electroencephalograms and regional cerebral blood flow.
    Horikawa Y; Naruse S; Hirakawa K; Tanaka C; Nishikawa H; Watari H
    J Cereb Blood Flow Metab; 1985 Jun; 5(2):235-40. PubMed ID: 3988822
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Age-related changes in swine brain creatine kinase-catalyzed 31P exchange measured in vivo using 31P NMR magnetization transfer.
    Corbett RJ; Laptook AR
    J Cereb Blood Flow Metab; 1994 Nov; 14(6):1070-7. PubMed ID: 7929650
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Supra- and sub-baseline phosphocreatine recovery in developing brain after transient hypoxia-ischaemia: relation to baseline energetics, insult severity and outcome.
    Iwata O; Iwata S; Bainbridge A; De Vita E; Matsuishi T; Cady EB; Robertson NJ
    Brain; 2008 Aug; 131(Pt 8):2220-6. PubMed ID: 18669507
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphorus magnetic resonance spectroscopy 2 h after perinatal cerebral hypoxia-ischemia prognosticates outcome in the newborn piglet.
    Cady EB; Iwata O; Bainbridge A; Wyatt JS; Robertson NJ
    J Neurochem; 2008 Nov; 107(4):1027-35. PubMed ID: 18786177
    [TBL] [Abstract][Full Text] [Related]  

  • 26. P NMR evaluation of hypoxic stress in brain of animal models.
    Chance B; Smith D; Nioka S; Osbakken M; Clark BJ; Giantisos A; Steinberg B; Butler S
    Adv Exp Med Biol; 1986; 200():107-11. PubMed ID: 3799294
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 31P-NMR studies of cerebral metabolic changes during graded hypoxia in newborn lambs.
    Younkin DP; Wagerle LC; Chance B; Maria J; Delivoria-Papadopoulos M
    J Appl Physiol (1985); 1987 Apr; 62(4):1569-74. PubMed ID: 3597226
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of age on the metabolic, ionic and electrical responses to anoxia in the newborn dog brain in vivo.
    Yoles E; Zarchin N; Mayevsky A
    J Basic Clin Physiol Pharmacol; 1991; 2(4):297-313. PubMed ID: 1822145
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Brain metabolic and ionic responses to systemic hypoxia in the newborn dog in vivo.
    Yoles E; Zarchin N; Zurovsky Y; Guggenheimer-Furman E; Mayevsky A
    Neurol Res; 1999 Dec; 21(8):765-70. PubMed ID: 10596386
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo mechanisms of myocardial functional stability during physiological interventions.
    Osbakken M; Blum H; Wang DJ; Doliba N; Ivanics T; Zhang D; Mayevsky A
    Cardiology; 1991; 79(1):1-13. PubMed ID: 1777909
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of hypoxia on fetal rat brain metabolism studied in utero by 31P-NMR spectroscopy.
    O'Shaughnessy CT; Lythgoe DJ; Butcher SP; Kendall L; Wood B; Steward MC
    Brain Res; 1991 Jun; 551(1-2):334-7. PubMed ID: 1913164
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Brain levels of NADH and NAD+ under hypoxic and hypoglycaemic conditions in vitro.
    Garofalo O; Cox DW; Bachelard HS
    J Neurochem; 1988 Jul; 51(1):172-6. PubMed ID: 3379400
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Delayed ("secondary") cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy.
    Lorek A; Takei Y; Cady EB; Wyatt JS; Penrice J; Edwards AD; Peebles D; Wylezinska M; Owen-Reece H; Kirkbride V
    Pediatr Res; 1994 Dec; 36(6):699-706. PubMed ID: 7898977
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vivo 31P NMR studies of orientation effects upon rat brain metabolism during mild hypoxia.
    Chen M; Stolk JA; Olsen JI; Schweizer MP
    Magn Reson Med; 1994 Sep; 32(3):401-4. PubMed ID: 7984073
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effects of bilirubin on brain energy metabolism during normoxia and hypoxia: an in vitro study using 31P nuclear magnetic resonance spectroscopy.
    Ives NK; Cox DW; Gardiner RM; Bachelard HS
    Pediatr Res; 1988 Jun; 23(6):569-73. PubMed ID: 3393387
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of graded hypoxia on brain cell membrane injury in newborn piglets.
    DiGiacomo JE; Pane CR; Gwiazdowski S; Mishra OP; Delivoria-Papadopoulos M
    Biol Neonate; 1992; 61(1):25-32. PubMed ID: 1314675
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Brain NADH redox state monitored in vivo by fiber optic surface fluorometry.
    Mayevsky A
    Brain Res; 1984 Mar; 319(1):49-68. PubMed ID: 6370376
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Non-invasive investigation of cerebral metabolism in newborn infants by phosphorus nuclear magnetic resonance spectroscopy.
    Cady EB; Costello AM; Dawson MJ; Delpy DT; Hope PL; Reynolds EO; Tofts PS; Wilkie DR
    Lancet; 1983 May; 1(8333):1059-62. PubMed ID: 6133102
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes of synaptosomal energy metabolism induced by hypoxia during aging.
    Benzi G; Giuffrida AM
    Neurochem Res; 1987 Feb; 12(2):149-57. PubMed ID: 3574592
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cortical oxidative metabolism under conditions of ischemia, hypoxia, and asphyxia in the rabbit.
    Koga H; Austin G
    J Neurosurg; 1983 Jul; 59(1):57-62. PubMed ID: 6864284
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.