BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 33433215)

  • 1. Identification and Quantitation of Reaction Products from Quinic Acid, Quinic Acid Lactone, and Chlorogenic Acid with Strecker Aldehydes in Roasted Coffee.
    Gigl M; Frank O; Barz J; Gabler A; Hegmanns C; Hofmann T
    J Agric Food Chem; 2021 Jan; 69(3):1027-1038. PubMed ID: 33433215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure determination of 3-O-caffeoyl-epi-gamma-quinide, an orphan bitter lactone in roasted coffee.
    Frank O; Blumberg S; Krümpel G; Hofmann T
    J Agric Food Chem; 2008 Oct; 56(20):9581-5. PubMed ID: 18817412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UHPLC-ESI-QqTOF-MS/MS characterization of minor chlorogenic acids in roasted Coffea arabica from different geographical origin.
    De Rosso M; Colomban S; Flamini R; Navarini L
    J Mass Spectrom; 2018 Sep; 53(9):763-771. PubMed ID: 29974575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of degradation products of chlorogenic acid in the antioxidant activity of roasted coffee.
    Kamiyama M; Moon JK; Jang HW; Shibamoto T
    J Agric Food Chem; 2015 Feb; 63(7):1996-2005. PubMed ID: 25658375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new method for the preparative isolation of chlorogenic acid lactones from coffee and model roasts of 5-caffeoylquinic acid.
    Kaiser N; Birkholz D; Colomban S; Navarini L; Engelhardt UH
    J Agric Food Chem; 2013 Jul; 61(28):6937-41. PubMed ID: 23790059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and Quantitation of Reaction Products from Chlorogenic Acid, Caffeic Acid, and Their Thermal Degradation Products with Odor-Active Thiols in Coffee Beverages.
    Gigl M; Frank O; Irmer L; Hofmann T
    J Agric Food Chem; 2022 May; 70(17):5427-5437. PubMed ID: 35467336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison and quantification of chlorogenic acids for differentiation of green Robusta and Arabica coffee beans.
    Badmos S; Lee SH; Kuhnert N
    Food Res Int; 2019 Dec; 126():108544. PubMed ID: 31732084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mozambioside Is an Arabica-Specific Bitter-Tasting Furokaurane Glucoside in Coffee Beans.
    Lang R; Klade S; Beusch A; Dunkel A; Hofmann T
    J Agric Food Chem; 2015 Dec; 63(48):10492-9. PubMed ID: 26585544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of crypto- and neochlorogenic lactones as potent xanthine oxidase inhibitors in roasted coffee beans.
    Honda S; Miura Y; Masuda A; Masuda T
    Biosci Biotechnol Biochem; 2014; 78(12):2110-6. PubMed ID: 25127262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporation of chlorogenic acids in coffee brew melanoidins.
    Bekedam EK; Schols HA; Van Boekel MA; Smit G
    J Agric Food Chem; 2008 Mar; 56(6):2055-63. PubMed ID: 18290625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of processing on chlorogenic acid content of commercially available coffee.
    Mills CE; Oruna-Concha MJ; Mottram DS; Gibson GR; Spencer JP
    Food Chem; 2013 Dec; 141(4):3335-40. PubMed ID: 23993490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical descriptors for sensory and parental origin of commercial Coffea genotypes.
    Bicho NC; Leitão AE; Ramalho JC; Lidon FC
    Int J Food Sci Nutr; 2012 Nov; 63(7):835-42. PubMed ID: 22486463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlorogenic acid-arabinose hybrid domains in coffee melanoidins: Evidences from a model system.
    Moreira AS; Coimbra MA; Nunes FM; Passos CP; Santos SA; Silvestre AJ; Silva AM; Rangel M; Domingues MR
    Food Chem; 2015 Oct; 185():135-44. PubMed ID: 25952851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization by LC-MS(n) of four new classes of p-coumaric acid-containing diacyl chlorogenic acids in green coffee beans.
    Clifford MN; Marks S; Knight S; Kuhnert N
    J Agric Food Chem; 2006 Jun; 54(12):4095-101. PubMed ID: 16756331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure determination and sensory analysis of bitter-tasting 4-vinylcatechol oligomers and their identification in roasted coffee by means of LC-MS/MS.
    Frank O; Blumberg S; Kunert C; Zehentbauer G; Hofmann T
    J Agric Food Chem; 2007 Mar; 55(5):1945-54. PubMed ID: 17269788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure- and dose-absorption relationships of coffee polyphenols.
    Erk T; Hauser J; Williamson G; Renouf M; Steiling H; Dionisi F; Richling E
    Biofactors; 2014; 40(1):103-12. PubMed ID: 23553742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Profiling of hydroxycinnamoylquinic acids in plant extracts using in-source CID fragmentation.
    Nagy Á; Abrankó L
    J Mass Spectrom; 2016 Dec; 51(12):1130-1145. PubMed ID: 27591562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coffee oil as a natural surfactant.
    Deotale SM; Dutta S; Moses JA; Anandharamakrishnan C
    Food Chem; 2019 Oct; 295():180-188. PubMed ID: 31174748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elucidation of aroma-active compounds and chlorogenic acids of Turkish coffee brewed from medium and dark roasted Coffea arabica beans.
    Turan Ayseli M; Kelebek H; Selli S
    Food Chem; 2021 Feb; 338():127821. PubMed ID: 32798819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of acyl migration in mono- and dicaffeoylquinic acids under aqueous basic, aqueous acidic, and dry roasting conditions.
    Deshpande S; Jaiswal R; Matei MF; Kuhnert N
    J Agric Food Chem; 2014 Sep; 62(37):9160-70. PubMed ID: 25116442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.