These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 33433532)

  • 1. Myoglobins engineered with artificial cofactors serve as artificial metalloenzymes and models of natural enzymes.
    Oohora K; Hayashi T
    Dalton Trans; 2021 Feb; 50(6):1940-1949. PubMed ID: 33433532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemoproteins Reconstituted with Artificial Metal Complexes as Biohybrid Catalysts.
    Oohora K; Onoda A; Hayashi T
    Acc Chem Res; 2019 Apr; 52(4):945-954. PubMed ID: 30933477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abiological catalysis by artificial haem proteins containing noble metals in place of iron.
    Key HM; Dydio P; Clark DS; Hartwig JF
    Nature; 2016 Jun; 534(7608):534-7. PubMed ID: 27296224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repurposing metalloproteins as mimics of natural metalloenzymes for small-molecule activation.
    DiPrimio DJ; Holland PL
    J Inorg Biochem; 2021 Jun; 219():111430. PubMed ID: 33873051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LmrR: A Privileged Scaffold for Artificial Metalloenzymes.
    Roelfes G
    Acc Chem Res; 2019 Mar; 52(3):545-556. PubMed ID: 30794372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational Design of Artificial Metalloproteins and Metalloenzymes with Metal Clusters.
    Lin YW
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31362341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expansion of Redox Chemistry in Designer Metalloenzymes.
    Yu Y; Liu X; Wang J
    Acc Chem Res; 2019 Mar; 52(3):557-565. PubMed ID: 30816694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox Engineering of Myoglobin by Cofactor Substitution to Enhance Cyclopropanation Reactivity.
    Kagawa Y; Oohora K; Himiyama T; Suzuki A; Hayashi T
    Angew Chem Int Ed Engl; 2024 Sep; 63(36):e202403485. PubMed ID: 38780472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding and Modulating Metalloenzymes with Unnatural Amino Acids, Non-Native Metal Ions, and Non-Native Metallocofactors.
    Mirts EN; Bhagi-Damodaran A; Lu Y
    Acc Chem Res; 2019 Apr; 52(4):935-944. PubMed ID: 30912643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directed Evolution of Artificial Metalloenzymes: A Universal Means to Tune the Selectivity of Transition Metal Catalysts?
    Reetz MT
    Acc Chem Res; 2019 Feb; 52(2):336-344. PubMed ID: 30689339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of artificial metalloenzymes with multiple inorganic elements: The more the merrier.
    Jung SM; Lee J; Song WJ
    J Inorg Biochem; 2021 Oct; 223():111552. PubMed ID: 34332336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directed evolution of artificial metalloenzymes for in vivo metathesis.
    Jeschek M; Reuter R; Heinisch T; Trindler C; Klehr J; Panke S; Ward TR
    Nature; 2016 Sep; 537(7622):661-665. PubMed ID: 27571282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intramolecular C(sp(3))H amination of arylsulfonyl azides with engineered and artificial myoglobin-based catalysts.
    Bordeaux M; Singh R; Fasan R
    Bioorg Med Chem; 2014 Oct; 22(20):5697-704. PubMed ID: 24890656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of Heteronuclear Metalloenzymes.
    Bhagi-Damodaran A; Hosseinzadeh P; Mirts E; Reed J; Petrik ID; Lu Y
    Methods Enzymol; 2016; 580():501-37. PubMed ID: 27586347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noble-Metal Substitution in Hemoproteins: An Emerging Strategy for Abiological Catalysis.
    Natoli SN; Hartwig JF
    Acc Chem Res; 2019 Feb; 52(2):326-335. PubMed ID: 30693758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging strategies for expanding the toolbox of enzymes in biocatalysis.
    Sandoval BA; Hyster TK
    Curr Opin Chem Biol; 2020 Apr; 55():45-51. PubMed ID: 31935627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Enzymatic Cascades and Directed Evolution.
    Liang AD; Serrano-Plana J; Peterson RL; Ward TR
    Acc Chem Res; 2019 Mar; 52(3):585-595. PubMed ID: 30735358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis.
    Lewis JC
    Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategies for the expression and characterization of artificial myoglobin-based carbene transferases.
    Carminati DM; Moore EJ; Fasan R
    Methods Enzymol; 2020; 644():35-61. PubMed ID: 32943150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Periplasmic Screening for Artificial Metalloenzymes.
    Jeschek M; Panke S; Ward TR
    Methods Enzymol; 2016; 580():539-56. PubMed ID: 27586348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.