BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

591 related articles for article (PubMed ID: 33433737)

  • 21. Neuropilin-2 promotes lineage plasticity and progression to neuroendocrine prostate cancer.
    Wang J; Li J; Yin L; Pu T; Wei J; Karthikeyan V; Lin TP; Gao AC; Wu BJ
    Oncogene; 2022 Sep; 41(37):4307-4317. PubMed ID: 35986103
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Role of Lineage Plasticity in Prostate Cancer Therapy Resistance.
    Beltran H; Hruszkewycz A; Scher HI; Hildesheim J; Isaacs J; Yu EY; Kelly K; Lin D; Dicker A; Arnold J; Hecht T; Wicha M; Sears R; Rowley D; White R; Gulley JL; Lee J; Diaz Meco M; Small EJ; Shen M; Knudsen K; Goodrich DW; Lotan T; Zoubeidi A; Sawyers CL; Rudin CM; Loda M; Thompson T; Rubin MA; Tawab-Amiri A; Dahut W; Nelson PS
    Clin Cancer Res; 2019 Dec; 25(23):6916-6924. PubMed ID: 31363002
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Advances in neuroendocrine prostate cancer research: From model construction to molecular network analyses.
    Shui X; Xu R; Zhang C; Meng H; Zhao J; Shi C
    Lab Invest; 2022 Apr; 102(4):332-340. PubMed ID: 34937865
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular mechanisms underlying the development of neuroendocrine prostate cancer.
    Liu S; Alabi BR; Yin Q; Stoyanova T
    Semin Cancer Biol; 2022 Nov; 86(Pt 3):57-68. PubMed ID: 35597438
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatial Gene Expression Analysis Reveals Characteristic Gene Expression Patterns of De Novo Neuroendocrine Prostate Cancer Coexisting with Androgen Receptor Pathway Prostate Cancer.
    Watanabe R; Miura N; Kurata M; Kitazawa R; Kikugawa T; Saika T
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240308
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reprogramming hormone-sensitive prostate cancer to a lethal neuroendocrine cancer lineage by mitochondrial pyruvate carrier (MPC).
    Xu H; Liu Z; Gao D; Li P; Shen Y; Sun Y; Xu L; Song N; Wang Y; Zhan M; Gao X; Wang Z
    Mol Metab; 2022 May; 59():101466. PubMed ID: 35219875
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel mechanism of SRRM4 in promoting neuroendocrine prostate cancer development via a pluripotency gene network.
    Lee AR; Gan Y; Tang Y; Dong X
    EBioMedicine; 2018 Sep; 35():167-177. PubMed ID: 30100395
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MCM2-7 complex is a novel druggable target for neuroendocrine prostate cancer.
    Hsu EC; Shen M; Aslan M; Liu S; Kumar M; Garcia-Marques F; Nguyen HM; Nolley R; Pitteri SJ; Corey E; Brooks JD; Stoyanova T
    Sci Rep; 2021 Jun; 11(1):13305. PubMed ID: 34172788
    [TBL] [Abstract][Full Text] [Related]  

  • 29. FOXA2 drives lineage plasticity and KIT pathway activation in neuroendocrine prostate cancer.
    Han M; Li F; Zhang Y; Dai P; He J; Li Y; Zhu Y; Zheng J; Huang H; Bai F; Gao D
    Cancer Cell; 2022 Nov; 40(11):1306-1323.e8. PubMed ID: 36332622
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Increased Serine and One-Carbon Pathway Metabolism by PKCλ/ι Deficiency Promotes Neuroendocrine Prostate Cancer.
    Reina-Campos M; Linares JF; Duran A; Cordes T; L'Hermitte A; Badur MG; Bhangoo MS; Thorson PK; Richards A; Rooslid T; Garcia-Olmo DC; Nam-Cha SY; Salinas-Sanchez AS; Eng K; Beltran H; Scott DA; Metallo CM; Moscat J; Diaz-Meco MT
    Cancer Cell; 2019 Mar; 35(3):385-400.e9. PubMed ID: 30827887
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of DEK as a potential therapeutic target for neuroendocrine prostate cancer.
    Lin D; Dong X; Wang K; Wyatt AW; Crea F; Xue H; Wang Y; Wu R; Bell RH; Haegert A; Brahmbhatt S; Hurtado-Coll A; Gout PW; Fazli L; Gleave ME; Collins CC; Wang Y
    Oncotarget; 2015 Jan; 6(3):1806-20. PubMed ID: 25544761
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preclinical Models of Neuroendocrine Prostate Cancer.
    Cacciatore A; Albino D; Catapano CV; Carbone GM
    Curr Protoc; 2023 May; 3(5):e742. PubMed ID: 37166213
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Treatment-induced neuroendocrine prostate cancer and
    Wishahi M
    World J Clin Cases; 2024 May; 12(13):2143-2146. PubMed ID: 38808339
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temporal evolution of cellular heterogeneity during the progression to advanced AR-negative prostate cancer.
    Brady NJ; Bagadion AM; Singh R; Conteduca V; Van Emmenis L; Arceci E; Pakula H; Carelli R; Khani F; Bakht M; Sigouros M; Bareja R; Sboner A; Elemento O; Tagawa S; Nanus DM; Loda M; Beltran H; Robinson B; Rickman DS
    Nat Commun; 2021 Jun; 12(1):3372. PubMed ID: 34099734
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activated ALK Cooperates with N-Myc via Wnt/β-Catenin Signaling to Induce Neuroendocrine Prostate Cancer.
    Unno K; Chalmers ZR; Pamarthy S; Vatapalli R; Rodriguez Y; Lysy B; Mok H; Sagar V; Han H; Yoo YA; Ku SY; Beltran H; Zhao Y; Abdulkadir SA
    Cancer Res; 2021 Apr; 81(8):2157-2170. PubMed ID: 33637566
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer.
    Baca SC; Takeda DY; Seo JH; Hwang J; Ku SY; Arafeh R; Arnoff T; Agarwal S; Bell C; O'Connor E; Qiu X; Alaiwi SA; Corona RI; Fonseca MAS; Giambartolomei C; Cejas P; Lim K; He M; Sheahan A; Nassar A; Berchuck JE; Brown L; Nguyen HM; Coleman IM; Kaipainen A; De Sarkar N; Nelson PS; Morrissey C; Korthauer K; Pomerantz MM; Ellis L; Pasaniuc B; Lawrenson K; Kelly K; Zoubeidi A; Hahn WC; Beltran H; Long HW; Brown M; Corey E; Freedman ML
    Nat Commun; 2021 Mar; 12(1):1979. PubMed ID: 33785741
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Addressing the need for more therapeutic options in neuroendocrine prostate cancer.
    Kemble J; Kwon ED; Karnes RJ
    Expert Rev Anticancer Ther; 2023 Feb; 23(2):177-185. PubMed ID: 36698089
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DPYSL5 is highly expressed in treatment-induced neuroendocrine prostate cancer and promotes lineage plasticity via EZH2/PRC2.
    Kaarijärvi R; Kaljunen H; Nappi L; Fazli L; Kung SHY; Hartikainen JM; Paakinaho V; Capra J; Rilla K; Malinen M; Mäkinen PI; Ylä-Herttuala S; Zoubeidi A; Wang Y; Gleave ME; Hiltunen M; Ketola K
    Commun Biol; 2024 Jan; 7(1):108. PubMed ID: 38238517
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeting DNA methylation and B7-H3 in RB1-deficient and neuroendocrine prostate cancer.
    Yamada Y; Venkadakrishnan VB; Mizuno K; Bakht M; Ku SY; Garcia MM; Beltran H
    Sci Transl Med; 2023 Nov; 15(722):eadf6732. PubMed ID: 37967200
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Epigenetic modulations and lineage plasticity in advanced prostate cancer.
    Ge R; Wang Z; Montironi R; Jiang Z; Cheng M; Santoni M; Huang K; Massari F; Lu X; Cimadamore A; Lopez-Beltran A; Cheng L
    Ann Oncol; 2020 Apr; 31(4):470-479. PubMed ID: 32139297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.