BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 33434272)

  • 1. Network controllability-based algorithm to target personalized driver genes for discovering combinatorial drugs of individual patients.
    Guo WF; Zhang SW; Feng YH; Liang J; Zeng T; Chen L
    Nucleic Acids Res; 2021 Apr; 49(7):e37. PubMed ID: 33434272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational method for clinically relevant cancer stratification and driver mutation module discovery using personal genomics profiles.
    Wang L; Li F; Sheng J; Wong ST
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S6. PubMed ID: 26099165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel network control model for identifying personalized driver genes in cancer.
    Guo WF; Zhang SW; Zeng T; Li Y; Gao J; Chen L
    PLoS Comput Biol; 2019 Nov; 15(11):e1007520. PubMed ID: 31765387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovering personalized driver mutation profiles of single samples in cancer by network control strategy.
    Guo WF; Zhang SW; Liu LL; Liu F; Shi QQ; Zhang L; Tang Y; Zeng T; Chen L
    Bioinformatics; 2018 Jun; 34(11):1893-1903. PubMed ID: 29329368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying Hub Genes Associated with Neoadjuvant Chemotherapy Resistance in Breast Cancer and Potential Drug Repurposing for the Development of Precision Medicine.
    Saha Detroja T; Detroja R; Mukherjee S; Samson AO
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prioritization of cancer driver gene with prize-collecting steiner tree by introducing an edge weighted strategy in the personalized gene interaction network.
    Zhang SW; Wang ZN; Li Y; Guo WF
    BMC Bioinformatics; 2022 Aug; 23(1):341. PubMed ID: 35974311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CDA: combinatorial drug discovery using transcriptional response modules.
    Lee JH; Kim DG; Bae TJ; Rho K; Kim JT; Lee JJ; Jang Y; Kim BC; Park KM; Kim S
    PLoS One; 2012; 7(8):e42573. PubMed ID: 22905152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel hypergraph model for identifying and prioritizing personalized drivers in cancer.
    Zhang N; Ma F; Guo D; Pang Y; Wang C; Zhang Y; Zheng X; Wang M
    PLoS Comput Biol; 2024 Apr; 20(4):e1012068. PubMed ID: 38683860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MD-Miner: a network-based approach for personalized drug repositioning.
    Wu H; Miller E; Wijegunawardana D; Regan K; Payne PRO; Li F
    BMC Syst Biol; 2017 Oct; 11(Suppl 5):86. PubMed ID: 28984195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Network controllability solutions for computational drug repurposing using genetic algorithms.
    Popescu VB; Kanhaiya K; Năstac DI; Czeizler E; Petre I
    Sci Rep; 2022 Jan; 12(1):1437. PubMed ID: 35082323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BMC3PM: bioinformatics multidrug combination protocol for personalized precision medicine and its application in cancer treatment.
    Mokhtari M; Khoshbakht S; Akbari ME; Moravveji SS
    BMC Med Genomics; 2023 Dec; 16(1):328. PubMed ID: 38087279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-modal optimization to identify personalized biomarkers for disease prediction of individual patients with cancer.
    Liang J; Li ZW; Yue CT; Hu Z; Cheng H; Liu ZX; Guo WF
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35858208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The optimization of combinatorial drug therapies: Strategies and laboratorial platforms.
    Wang B; Warden AR; Ding X
    Drug Discov Today; 2021 Nov; 26(11):2646-2659. PubMed ID: 34332097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Personalized therapy: can it tame the COVID-19 monster?
    Arish M; Naz F
    Per Med; 2021 Sep; 18(6):583-593. PubMed ID: 34649460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico drug combination discovery for personalized cancer therapy.
    Jeon M; Kim S; Park S; Lee H; Kang J
    BMC Syst Biol; 2018 Mar; 12(Suppl 2):16. PubMed ID: 29560824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PhenoDriver: interpretable framework for studying personalized phenotype-associated driver genes in breast cancer.
    Li Y; Zhang SW; Xie MY; Zhang T
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37738403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic drug combinations from electronic health records and gene expression.
    Low YS; Daugherty AC; Schroeder EA; Chen W; Seto T; Weber S; Lim M; Hastie T; Mathur M; Desai M; Farrington C; Radin AA; Sirota M; Kenkare P; Thompson CA; Yu PP; Gomez SL; Sledge GW; Kurian AW; Shah NH
    J Am Med Inform Assoc; 2017 May; 24(3):565-576. PubMed ID: 27940607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Latent space search based multimodal optimization with personalized edge-network biomarker for multi-purpose early disease prediction.
    Liang J; Li ZW; Sun ZN; Bi Y; Cheng H; Zeng T; Guo WF
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37833844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Refining breast cancer biomarker discovery and drug targeting through an advanced data-driven approach.
    Rakhshaninejad M; Fathian M; Shirkoohi R; Barzinpour F; Gandomi AH
    BMC Bioinformatics; 2024 Jan; 25(1):33. PubMed ID: 38253993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying driver genes for individual patients through inductive matrix completion.
    Zhang T; Zhang SW; Li Y
    Bioinformatics; 2021 Dec; 37(23):4477-4484. PubMed ID: 34175939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.