These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 33434407)

  • 1. Implantable Cardiac Kirigami-Inspired Lead-Based Energy Harvester Fabricated by Enhanced Piezoelectric Composite Film.
    Xu Z; Jin C; Cabe A; Escobedo D; Gruslova A; Jenney S; Closson AB; Dong L; Chen Z; Feldman MD; Zhang JXJ
    Adv Healthc Mater; 2021 Apr; 10(8):e2002100. PubMed ID: 33434407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible Energy Harvester on a Pacemaker Lead Using Multibeam Piezoelectric Composite Thin Films.
    Xu Z; Jin C; Cabe A; Escobedo D; Hao N; Trase I; Closson AB; Dong L; Nie Y; Elliott J; Feldman MD; Chen Z; Zhang JXJ
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34170-34179. PubMed ID: 32543828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifunctional Pacemaker Lead for Cardiac Energy Harvesting and Pressure Sensing.
    Dong L; Closson AB; Jin C; Nie Y; Cabe A; Escobedo D; Huang S; Trase I; Xu Z; Chen Z; Feldman MD; Zhang JXJ
    Adv Healthc Mater; 2020 Jun; 9(11):e2000053. PubMed ID: 32347010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Powering a Real Cardiac Pacemaker by Natural Energy of a Heartbeat.
    Li N; Yi Z; Ma Y; Xie F; Huang Y; Tian Y; Dong X; Liu Y; Shao X; Li Y; Jin L; Liu J; Xu Z; Yang B; Zhang H
    ACS Nano; 2019 Mar; 13(3):2822-2830. PubMed ID: 30784259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester.
    Hwang GT; Park H; Lee JH; Oh S; Park KI; Byun M; Park H; Ahn G; Jeong CK; No K; Kwon H; Lee SG; Joung B; Lee KJ
    Adv Mater; 2014 Jul; 26(28):4880-7. PubMed ID: 24740465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications.
    Hwang GT; Byun M; Jeong CK; Lee KJ
    Adv Healthc Mater; 2015 Apr; 4(5):646-58. PubMed ID: 25476410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices.
    Zhou H; Zhang Y; Qiu Y; Wu H; Qin W; Liao Y; Yu Q; Cheng H
    Biosens Bioelectron; 2020 Nov; 168():112569. PubMed ID: 32905930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motion Characterization of Pacemaker Lead Wire In Vivo for Piezoelectric Energy Harvesting Applications.
    Hu C; Behdinan K
    Cardiovasc Eng Technol; 2024 Apr; 15(2):111-122. PubMed ID: 37991598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prospects of self-powering leadless pacemakers using piezoelectric energy harvesting technology by heart kinetic motion.
    Khazaee M; Enkeshafi AA; Kavehei O; Riahi S; Rosendahl L; Rezania A
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Body-Integrated Self-Powered System for Wearable and Implantable Applications.
    Shi B; Liu Z; Zheng Q; Meng J; Ouyang H; Zou Y; Jiang D; Qu X; Yu M; Zhao L; Fan Y; Wang ZL; Li Z
    ACS Nano; 2019 May; 13(5):6017-6024. PubMed ID: 31083973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging Implantable Energy Harvesters and Self-Powered Implantable Medical Electronics.
    Jiang D; Shi B; Ouyang H; Fan Y; Wang ZL; Li Z
    ACS Nano; 2020 Jun; 14(6):6436-6448. PubMed ID: 32459086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Self-Powered Insole for Human Motion Recognition.
    Han Y; Cao Y; Zhao J; Yin Y; Ye L; Wang X; You Z
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27649188
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Xie F; Qian X; Li N; Cui D; Zhang H; Xu Z
    Ann Transl Med; 2021 May; 9(9):800. PubMed ID: 34268413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-flexible Piezoelectric Devices Integrated with Heart to Harvest the Biomechanical Energy.
    Lu B; Chen Y; Ou D; Chen H; Diao L; Zhang W; Zheng J; Ma W; Sun L; Feng X
    Sci Rep; 2015 Nov; 5():16065. PubMed ID: 26538375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perovskite Piezoelectric-Based Flexible Energy Harvesters for Self-Powered Implantable and Wearable IoT Devices.
    Pattipaka S; Bae YM; Jeong CK; Park KI; Hwang GT
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implantable Energy-Harvesting Devices.
    Shi B; Li Z; Fan Y
    Adv Mater; 2018 Nov; 30(44):e1801511. PubMed ID: 30043422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracardiac Turbines Suitable for Catheter-Based Implantation-An Approach to Power Battery and Leadless Cardiac Pacemakers?
    Haeberlin A; Rosch Y; Tholl MV; Gugler Y; Okle J; Heinisch PP; Reichlin T; Burger J; Zurbuchen A
    IEEE Trans Biomed Eng; 2020 Apr; 67(4):1159-1166. PubMed ID: 31380741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lead-Free Perovskite Nanowire-Employed Piezopolymer for Highly Efficient Flexible Nanocomposite Energy Harvester.
    Jeong CK; Baek C; Kingon AI; Park KI; Kim SH
    Small; 2018 May; 14(19):e1704022. PubMed ID: 29655226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implantable cardiac rhythm device batteries.
    Root MJ
    J Cardiovasc Transl Res; 2008 Dec; 1(4):254-7. PubMed ID: 20559932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical Energy Sensing and Harvesting in Micromachined Polymer-Based Piezoelectric Transducers for Fully Implanted Hearing Systems: A Review.
    Latif R; Noor MM; Yunas J; Hamzah AA
    Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.