BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 33434829)

  • 1. Application of soil biofertilizers to a clayey soil contaminated with Sclerotium rolfsii can promote production, protection and nutritive status of Phaseolus vulgaris.
    Abdelhafez AA; Eid KE; El-Abeid SE; Abbas MHH; Ahmed N; Mansour RRME; Zou G; Iqbal J; Fahad S; Elkelish A; Alamri S; Siddiqui MH; Mohamed I
    Chemosphere; 2021 May; 271():129321. PubMed ID: 33434829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of plant growth promoting Rhizobacteria (PGPR) and mycorrhizae to improve the growth and nutrient utilization of common bean in a soil infected with white rot fungi.
    Mohamed I; Eid KE; Abbas MHH; Salem AA; Ahmed N; Ali M; Shah GM; Fang C
    Ecotoxicol Environ Saf; 2019 Apr; 171():539-548. PubMed ID: 30641315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arbuscular mycorrhiza and environmentally biochemicals enhance the nutritional status of Helianthus tuberosus and induce its resistance against Sclerotium rolfsii.
    Eid KE; Abbas MHH; Mekawi EM; ElNagar MM; Abdelhafez AA; Amin BH; Mohamed I; Ali MM
    Ecotoxicol Environ Saf; 2019 Dec; 186():109783. PubMed ID: 31629192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First Report of Southern Blight Caused by Sclerotium rolfsii on Common Bean (Phaseolus vulgaris) in Italy.
    Garibaldi A; Gilardi G; Ortu G; Gullino ML; Testa M
    Plant Dis; 2013 Oct; 97(10):1386. PubMed ID: 30722177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endophytic Fungi as Potential Biocontrol Agents against
    Safari Motlagh MR; Farokhzad M; Kaviani B; Kulus D
    Cells; 2022 Aug; 11(17):. PubMed ID: 36078051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Belowground fungal volatiles perception in okra (Abelmoschus esculentus) facilitates plant growth under biotic stress.
    Singh J; Singh P; Vaishnav A; Ray S; Rajput RS; Singh SM; Singh HB
    Microbiol Res; 2021 May; 246():126721. PubMed ID: 33581445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological and Pathogenic Characterization of
    Paparu P; Acur A; Kato F; Acam C; Nakibuule J; Nkuboye A; Musoke S; Mukankusi C
    Plant Dis; 2020 Aug; 104(8):2130-2137. PubMed ID: 32515687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and investigation on antagonistic effect of Trichoderma spp. on tea seedlings white foot and root rot (Sclerotium rolfsii Sacc.) in vitro condition.
    Shaigan S; Seraji A; Moghaddam SA
    Pak J Biol Sci; 2008 Oct; 11(19):2346-50. PubMed ID: 19137869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Differentially Expressed Genes in Trichoderma koningii IABT1252 During Its Interaction with Sclerotium rolfsii.
    Rabinal C; Bhat S
    Curr Microbiol; 2020 Mar; 77(3):396-404. PubMed ID: 31844935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. trans-2-Octenal, a single compound of a fungal origin, controls Sclerotium rolfsii, both in vitro and in soil.
    Liarzi O; Benichis M; Gamliel A; Ezra D
    Pest Manag Sci; 2020 Jun; 76(6):2068-2071. PubMed ID: 31943663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro and in vivo antagonism of actinomycetes isolated from Moroccan rhizospherical soils against Sclerotium rolfsii: a causal agent of root rot on sugar beet (Beta vulgaris L.).
    Errakhi R; Lebrihi A; Barakate M
    J Appl Microbiol; 2009 Aug; 107(2):672-81. PubMed ID: 19302305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocontrol effects of Penicillium griseofulvum against monkshood (Aconitum carmichaelii Debx.) root diseases caused by Sclerotium rolfsiii and Fusarium spp.
    Li Y; Guo Q; Wei X; Xue Q; Lai H
    J Appl Microbiol; 2019 Nov; 127(5):1532-1545. PubMed ID: 31304623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Bio-Friendly Formulations of Chitinase-Producing
    Abo-Zaid G; Abdelkhalek A; Matar S; Darwish M; Abdel-Gayed M
    J Fungi (Basel); 2021 Feb; 7(3):. PubMed ID: 33669115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PCR-DGGE Analysis Proves the Suppression of
    Elsharkawy MM; Kuno S; Hyakumachi M; Mostafa YS; Alamri SA; Alrumman SA
    J Fungi (Basel); 2022 Jan; 8(2):. PubMed ID: 35205888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Resistance to Sclerotium rolfsii in Populations of Alfalfa Selected for Quantitative Resistance to Sclerotinia trifoliorum.
    Pratt RG; Rowe DE
    Phytopathology; 2002 Feb; 92(2):204-9. PubMed ID: 18943095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First Report of Sclerotium Rot Caused by Sclerotium rolfsii on Yacón in South Korea.
    Kwon JH; Kang DW; Lee SD; Kim J
    Plant Dis; 2014 Oct; 98(10):1443. PubMed ID: 30703993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inoculation of black turtle beans (
    Carrara JE; Reddivari L; Heller WP
    Plant Environ Interact; 2024 Feb; 5(1):e10128. PubMed ID: 38323132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological silicon nanoparticles improve Phaseolus vulgaris L. yield and minimize its contaminant contents on a heavy metals-contaminated saline soil.
    El-Saadony MT; Desoky EM; Saad AM; Eid RSM; Selem E; Elrys AS
    J Environ Sci (China); 2021 Aug; 106():1-14. PubMed ID: 34210425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of temperature on antagonistic and biocontrol potential of Trichoderma sp. on Sclerotium rolfsii.
    Mukherjee PK; Raghu K
    Mycopathologia; 1997; 139(3):151-5. PubMed ID: 16283454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of antagonistic and plant growth promoting activities of chitinolytic endophytic actinomycetes associated with medicinal plants against Sclerotium rolfsii in chickpea.
    Singh SP; Gaur R
    J Appl Microbiol; 2016 Aug; 121(2):506-18. PubMed ID: 27170067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.