These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 33434983)

  • 1. Conformation Transitions of Recombinant Spidroins via Integration of Time-Resolved FTIR Spectroscopy and Molecular Dynamic Simulation.
    Ling S; Dinjaski N; Ebrahimi D; Wong JY; Kaplan DL; Buehler MJ
    ACS Biomater Sci Eng; 2016 Aug; 2(8):1298-1308. PubMed ID: 33434983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic Integration of Experimental and Simulation Approaches for the de Novo Design of Silk-Based Materials.
    Huang W; Ebrahimi D; Dinjaski N; Tarakanova A; Buehler MJ; Wong JY; Kaplan DL
    Acc Chem Res; 2017 Apr; 50(4):866-876. PubMed ID: 28191922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioengineering of spider silks for the production of biomedical materials.
    Bittencourt DMC; Oliveira P; Michalczechen-Lacerda VA; Rosinha GMS; Jones JA; Rech EL
    Front Bioeng Biotechnol; 2022; 10():958486. PubMed ID: 36017345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic perspectives of spider silk genes through target capture sequencing: Conservation of stabilization mechanisms and homology-based structural models of spidroin terminal regions.
    Collin MA; Clarke TH; Ayoub NA; Hayashi CY
    Int J Biol Macromol; 2018 Jul; 113():829-840. PubMed ID: 29454054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De Novo Design of Recombinant Spider Silk Proteins for Material Applications.
    Zheng K; Ling S
    Biotechnol J; 2019 Jan; 14(1):e1700753. PubMed ID: 29781251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical spidroin micellar nanoparticles as the fundamental precursors of spider silks.
    Parent LR; Onofrei D; Xu D; Stengel D; Roehling JD; Addison JB; Forman C; Amin SA; Cherry BR; Yarger JL; Gianneschi NC; Holland GP
    Proc Natl Acad Sci U S A; 2018 Nov; 115(45):11507-11512. PubMed ID: 30348773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting rates of in vivo degradation of recombinant spider silk proteins.
    Dinjaski N; Ebrahimi D; Qin Z; Giordano JEM; Ling S; Buehler MJ; Kaplan DL
    J Tissue Eng Regen Med; 2018 Jan; 12(1):e97-e105. PubMed ID: 27943629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of genetically engineered spider silk-dentin matrix protein 1 chimeric protein on hydroxyapatite nucleation.
    Huang J; Wong C; George A; Kaplan DL
    Biomaterials; 2007 May; 28(14):2358-67. PubMed ID: 17289141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete gene sequence of spider attachment silk protein (PySp1) reveals novel linker regions and extreme repeat homogenization.
    Chaw RC; Saski CA; Hayashi CY
    Insect Biochem Mol Biol; 2017 Feb; 81():80-90. PubMed ID: 28057598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and optical studies on selected web spinning spider silks.
    Karthikeyani R; Divya A; Mathavan T; Asath RM; Benial AM; Muthuchelian K
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 170():111-6. PubMed ID: 27423109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An experimental confirmation of thermal transitions in native and regenerated spider silks.
    Torres FG; Troncoso OP; Torres C; Cabrejos W
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1432-7. PubMed ID: 23827592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence of Decoupling Protein Structure from Spidroin Expression in Spider Dragline Silks.
    Blamires SJ; Kasumovic MM; Tso IM; Martens PJ; Hook JM; Rawal A
    Int J Mol Sci; 2016 Aug; 17(8):. PubMed ID: 27517909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the N-terminal domain of Euprosthenops australis dragline silk suggests that conversion of spidroin dope to spider silk involves a conserved asymmetric dimer intermediate.
    Jiang W; Askarieh G; Shkumatov A; Hedhammar M; Knight SD
    Acta Crystallogr D Struct Biol; 2019 Jul; 75(Pt 7):618-627. PubMed ID: 31282471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombinant Silk Fiber Properties Correlate to Prefibrillar Self-Assembly.
    Xu L; Weatherbee-Martin N; Liu XQ; Rainey JK
    Small; 2019 Mar; 15(12):e1805294. PubMed ID: 30756524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyelectrolyte Fiber Assembly of Plant-Derived Spider Silk-like Proteins.
    Peng CA; Russo J; Lyda TA; Marcotte WR
    Biomacromolecules; 2017 Mar; 18(3):740-746. PubMed ID: 28196414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silk genes and silk gene expression in the spider Tengella perfuga (Zoropsidae), including a potential cribellar spidroin (CrSp).
    Correa-Garhwal SM; Chaw RC; Clarke TH; Alaniz LG; Chan FS; Alfaro RE; Hayashi CY
    PLoS One; 2018; 13(9):e0203563. PubMed ID: 30235223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RGD-functionalized bioengineered spider dragline silk biomaterial.
    Bini E; Foo CW; Huang J; Karageorgiou V; Kitchel B; Kaplan DL
    Biomacromolecules; 2006 Nov; 7(11):3139-45. PubMed ID: 17096543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secondary Structure Transition and Critical Stress for a Model of Spider Silk Assembly.
    Giesa T; Perry CC; Buehler MJ
    Biomacromolecules; 2016 Feb; 17(2):427-36. PubMed ID: 26669270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recombinant Production, Characterization, and Fiber Spinning of an Engineered Short Major Ampullate Spidroin (MaSp1s).
    Thamm C; Scheibel T
    Biomacromolecules; 2017 Apr; 18(4):1365-1372. PubMed ID: 28233980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The correlation between the length of repetitive domain and mechanical properties of the recombinant flagelliform spidroin.
    Li X; Shi CH; Tang CL; Cai YM; Meng Q
    Biol Open; 2017 Mar; 6(3):333-339. PubMed ID: 28126711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.