These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 33435023)
1. 3D Printing of Silk Particle-Reinforced Chitosan Hydrogel Structures and Their Properties. Zhang J; Allardyce BJ; Rajkhowa R; Zhao Y; Dilley RJ; Redmond SL; Wang X; Liu X ACS Biomater Sci Eng; 2018 Aug; 4(8):3036-3046. PubMed ID: 33435023 [TBL] [Abstract][Full Text] [Related]
2. Silk particles, microfibres and nanofibres: A comparative study of their functions in 3D printing hydrogel scaffolds. Zhang J; Allardyce BJ; Rajkhowa R; Kalita S; Dilley RJ; Wang X; Liu X Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109784. PubMed ID: 31349521 [TBL] [Abstract][Full Text] [Related]
3. 3D printing of silk microparticle reinforced polycaprolactone scaffolds for tissue engineering applications. Vyas C; Zhang J; Øvrebø Ø; Huang B; Roberts I; Setty M; Allardyce B; Haugen H; Rajkhowa R; Bartolo P Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111433. PubMed ID: 33255027 [TBL] [Abstract][Full Text] [Related]
4. 3D printing of high-strength chitosan hydrogel scaffolds without any organic solvents. Zhou L; Ramezani H; Sun M; Xie M; Nie J; Lv S; Cai J; Fu J; He Y Biomater Sci; 2020 Sep; 8(18):5020-5028. PubMed ID: 32844842 [TBL] [Abstract][Full Text] [Related]
5. Photopolymerizable chitosan hydrogels with improved strength and 3D printability. Zhang M; Wan T; Fan P; Shi K; Chen X; Yang H; Liu X; Xu W; Zhou Y Int J Biol Macromol; 2021 Dec; 193(Pt A):109-116. PubMed ID: 34699888 [TBL] [Abstract][Full Text] [Related]
6. Toughening robocast chitosan/biphasic calcium phosphate composite scaffolds with silk fibroin: Tuning printable inks and scaffold structure for bone regeneration. Torres PMC; Ribeiro N; Nunes CMM; Rodrigues AFM; Sousa A; Olhero SM Biomater Adv; 2022 Mar; 134():112690. PubMed ID: 35581087 [TBL] [Abstract][Full Text] [Related]
7. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967 [TBL] [Abstract][Full Text] [Related]
8. Control of maleic acid-propylene diepoxide hydrogel for 3D printing application for flexible tissue engineering scaffold with high resolution by end capping and graft polymerization. Tran HN; Kim IG; Kim JH; Chung EJ; Noh I Biomater Res; 2022 Dec; 26(1):75. PubMed ID: 36494708 [TBL] [Abstract][Full Text] [Related]
9. 3D Printing of Biocompatible and Antibacterial Silica-Silk-Chitosan-Based Hybrid Aerogel Scaffolds Loaded with Propolis. Vaseghi A; Sadeghizadeh M; Herb M; Grumme D; Demidov Y; Remmler T; Maleki HH ACS Appl Bio Mater; 2024 Dec; 7(12):7917-7935. PubMed ID: 39360961 [TBL] [Abstract][Full Text] [Related]
10. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores. Huang L; Du X; Fan S; Yang G; Shao H; Li D; Cao C; Zhu Y; Zhu M; Zhang Y Carbohydr Polym; 2019 Oct; 221():146-156. PubMed ID: 31227153 [TBL] [Abstract][Full Text] [Related]
11. Optimization of chitosan-gelatin-based 3D-printed scaffolds for tissue engineering and drug delivery applications. Palamidi A; Koumentakou I; Michopoulou A; Bikiaris DN; Terzopoulou Z Int J Pharm; 2024 Dec; 666():124776. PubMed ID: 39343329 [TBL] [Abstract][Full Text] [Related]
12. Tripolyphosphate-Crosslinked Chitosan/Gelatin Biocomposite Ink for 3D Printing of Uniaxial Scaffolds. Fischetti T; Celikkin N; Contessi Negrini N; Farè S; Swieszkowski W Front Bioeng Biotechnol; 2020; 8():400. PubMed ID: 32426350 [TBL] [Abstract][Full Text] [Related]
13. 3D-Printing of Silk Nanofibrils Reinforced Alginate for Soft Tissue Engineering. Mohammadpour Z; Kharaziha M; Zarrabi A Pharmaceutics; 2023 Feb; 15(3):. PubMed ID: 36986622 [TBL] [Abstract][Full Text] [Related]
14. 3D printed hydrogels with oxidized cellulose nanofibers and silk fibroin for the proliferation of lung epithelial stem cells. Huang L; Yuan W; Hong Y; Fan S; Yao X; Ren T; Song L; Yang G; Zhang Y Cellulose (Lond); 2021; 28(1):241-257. PubMed ID: 33132545 [TBL] [Abstract][Full Text] [Related]
15. Glycerylphytate as an ionic crosslinker for 3D printing of multi-layered scaffolds with improved shape fidelity and biological features. Mora-Boza A; Włodarczyk-Biegun MK; Del Campo A; Vázquez-Lasa B; Román JS Biomater Sci; 2019 Dec; 8(1):506-516. PubMed ID: 31764919 [TBL] [Abstract][Full Text] [Related]
16. Processing and Properties of Chitosan Inks for 3D Printing of Hydrogel Microstructures. Wu Q; Therriault D; Heuzey MC ACS Biomater Sci Eng; 2018 Jul; 4(7):2643-2652. PubMed ID: 33435127 [TBL] [Abstract][Full Text] [Related]
17. 3D Freeform Printing of Nanocomposite Hydrogels through Chen S; Jang TS; Pan HM; Jung HD; Sia MW; Xie S; Hang Y; Chong SKM; Wang D; Song J Int J Bioprint; 2020; 6(2):258. PubMed ID: 32782988 [TBL] [Abstract][Full Text] [Related]
18. Development of Bioinspired Functional Chitosan/Cellulose Nanofiber 3D Hydrogel Constructs by 3D Printing for Application in the Engineering of Mechanically Demanding Tissues. Kamdem Tamo A; Doench I; Walter L; Montembault A; Sudre G; David L; Morales-Helguera A; Selig M; Rolauffs B; Bernstein A; Hoenders D; Walther A; Osorio-Madrazo A Polymers (Basel); 2021 May; 13(10):. PubMed ID: 34065272 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: Effect of particle size on physico-mechanical properties and in vitro cellular behavior. Bidgoli MR; Alemzadeh I; Tamjid E; Khafaji M; Vossoughi M Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109688. PubMed ID: 31349405 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]