These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 33435067)
1. Controlled Release of BMP-2 from a Heparin-Conjugated Strontium-Substituted Nanohydroxyapatite/Silk Fibroin Scaffold for Bone Regeneration. Yan S; Feng L; Zhu Q; Yang W; Lan Y; Li D; Liu Y; Xue W; Guo R; Wu G ACS Biomater Sci Eng; 2018 Sep; 4(9):3291-3303. PubMed ID: 33435067 [TBL] [Abstract][Full Text] [Related]
2. Sequential and sustained release of SDF-1 and BMP-2 from silk fibroin-nanohydroxyapatite scaffold for the enhancement of bone regeneration. Shen X; Zhang Y; Gu Y; Xu Y; Liu Y; Li B; Chen L Biomaterials; 2016 Nov; 106():205-16. PubMed ID: 27566869 [TBL] [Abstract][Full Text] [Related]
3. Modulation of Bone-Specific Tissue Regeneration by Incorporating Bone Morphogenetic Protein and Controlling the Shell Thickness of Silk Fibroin/Chitosan/Nanohydroxyapatite Core-Shell Nanofibrous Membranes. Shalumon KT; Lai GJ; Chen CH; Chen JP ACS Appl Mater Interfaces; 2015 Sep; 7(38):21170-81. PubMed ID: 26355766 [TBL] [Abstract][Full Text] [Related]
4. Response of human mesenchymal stem cells to intrafibrillar nanohydroxyapatite content and extrafibrillar nanohydroxyapatite in biomimetic chitosan/silk fibroin/nanohydroxyapatite nanofibrous membrane scaffolds. Lai GJ; Shalumon KT; Chen JP Int J Nanomedicine; 2015; 10():567-84. PubMed ID: 25609962 [TBL] [Abstract][Full Text] [Related]
5. Controlled dual delivery of low doses of BMP-2 and VEGF in a silk fibroin-nanohydroxyapatite scaffold for vascularized bone regeneration. Wang Q; Zhang Y; Li B; Chen L J Mater Chem B; 2017 Sep; 5(33):6963-6972. PubMed ID: 32264345 [TBL] [Abstract][Full Text] [Related]
6. Controlled release of BMP-2 from a collagen-mimetic peptide-modified silk fibroin-nanohydroxyapatite scaffold for bone regeneration. Sun J; Zhang Y; Li B; Gu Y; Chen L J Mater Chem B; 2017 Nov; 5(44):8770-8779. PubMed ID: 32264271 [TBL] [Abstract][Full Text] [Related]
7. A silk fibroin/chitosan/nanohydroxyapatite biomimetic bone scaffold combined with autologous concentrated growth factor promotes the proliferation and osteogenic differentiation of BMSCs and repair of critical bone defects. Zhou Y; Liu X; She H; Wang R; Bai F; Xiang B Regen Ther; 2022 Dec; 21():307-321. PubMed ID: 36110973 [TBL] [Abstract][Full Text] [Related]
8. The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs. Liu H; Peng H; Wu Y; Zhang C; Cai Y; Xu G; Li Q; Chen X; Ji J; Zhang Y; OuYang HW Biomaterials; 2013 Jun; 34(18):4404-17. PubMed ID: 23515177 [TBL] [Abstract][Full Text] [Related]
9. Preparation and biological properties of silk fibroin/nano-hydroxyapatite/graphene oxide scaffolds with an oriented channel-like structure. Wang L; Fang M; Xia Y; Hou J; Nan X; Zhao B; Wang X RSC Adv; 2020 Mar; 10(17):10118-10128. PubMed ID: 35498577 [TBL] [Abstract][Full Text] [Related]
10. Biocompatiable silk fibroin/carboxymethyl chitosan/strontium substituted hydroxyapatite/cellulose nanocrystal composite scaffolds for bone tissue engineering. Zhang XY; Chen YP; Han J; Mo J; Dong PF; Zhuo YH; Feng Y Int J Biol Macromol; 2019 Sep; 136():1247-1257. PubMed ID: 31247228 [TBL] [Abstract][Full Text] [Related]
11. [Lentivirus-mediated BMP-2 overexpression plasmid transfection into bone marrow mesenchymal stem cells combined with silk fibroin scaffold for osteoblast transformation]. Fan SP; Li XH; Shi CX; Fan CX; Ye FG Zhongguo Gu Shang; 2019 Sep; 32(9):853-860. PubMed ID: 31615185 [TBL] [Abstract][Full Text] [Related]
12. Composite scaffolds of nano-hydroxyapatite and silk fibroin enhance mesenchymal stem cell-based bone regeneration via the interleukin 1 alpha autocrine/paracrine signaling loop. Liu H; Xu GW; Wang YF; Zhao HS; Xiong S; Wu Y; Heng BC; An CR; Zhu GH; Xie DH Biomaterials; 2015 May; 49():103-12. PubMed ID: 25725559 [TBL] [Abstract][Full Text] [Related]
13. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration. Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708 [TBL] [Abstract][Full Text] [Related]
14. Mesoporous Hydroxyapatite Nanoparticles Mediate the Release and Bioactivity of BMP-2 for Enhanced Bone Regeneration. Qiu Y; Xu X; Guo W; Zhao Y; Su J; Chen J ACS Biomater Sci Eng; 2020 Apr; 6(4):2323-2335. PubMed ID: 33455303 [TBL] [Abstract][Full Text] [Related]
15. Hierarchical micro/submicrometer-scale structured scaffolds prepared via coaxial electrospinning for bone regeneration. Tao C; Zhang Y; Li B; Chen L J Mater Chem B; 2017 Dec; 5(46):9219-9228. PubMed ID: 32264605 [TBL] [Abstract][Full Text] [Related]
16. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Li C; Vepari C; Jin HJ; Kim HJ; Kaplan DL Biomaterials; 2006 Jun; 27(16):3115-24. PubMed ID: 16458961 [TBL] [Abstract][Full Text] [Related]
17. Rational design of gelatin/nanohydroxyapatite cryogel scaffolds for bone regeneration by introducing chemical and physical cues to enhance osteogenesis of bone marrow mesenchymal stem cells. Shalumon KT; Liao HT; Kuo CY; Wong CB; Li CJ; P A M; Chen JP Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109855. PubMed ID: 31500067 [TBL] [Abstract][Full Text] [Related]
18. Segmental bone regeneration using an rhBMP-2-loaded gelatin/nanohydroxyapatite/fibrin scaffold in a rabbit model. Liu Y; Lu Y; Tian X; Cui G; Zhao Y; Yang Q; Yu S; Xing G; Zhang B Biomaterials; 2009 Oct; 30(31):6276-85. PubMed ID: 19683811 [TBL] [Abstract][Full Text] [Related]
19. Synergistic effect of strontium, bioactive glass and nano-hydroxyapatite promotes bone regeneration of critical-sized radial bone defects. Oryan A; Baghaban Eslaminejad M; Kamali A; Hosseini S; Sayahpour FA; Baharvand H J Biomed Mater Res B Appl Biomater; 2019 Jan; 107(1):50-64. PubMed ID: 29468802 [TBL] [Abstract][Full Text] [Related]
20. Porous silk fibroin 3-D scaffolds for delivery of bone morphogenetic protein-2 in vitro and in vivo. Karageorgiou V; Tomkins M; Fajardo R; Meinel L; Snyder B; Wade K; Chen J; Vunjak-Novakovic G; Kaplan DL J Biomed Mater Res A; 2006 Aug; 78(2):324-34. PubMed ID: 16637042 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]