These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 33435067)
21. Surface modification of Thai silk fibroin scaffolds with gelatin and chitooligosaccharide for enhanced osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Wongputtaraksa T; Ratanavaraporn J; Pichyangkura R; Damrongsakkul S J Biomed Mater Res B Appl Biomater; 2012 Nov; 100(8):2307-15. PubMed ID: 23015285 [TBL] [Abstract][Full Text] [Related]
22. In vitro evaluation of electrospun silk fibroin/nano-hydroxyapatite/BMP-2 scaffolds for bone regeneration. Niu B; Li B; Gu Y; Shen X; Liu Y; Chen L J Biomater Sci Polym Ed; 2017 Feb; 28(3):257-270. PubMed ID: 27931176 [TBL] [Abstract][Full Text] [Related]
23. Preparation and biological properties of silk fibroin/nano-hydroxyapatite/hyaluronic acid composite scaffold. Wang L; Nan X; Hou J; Xia Y; Guo Y; Meng K; Xu C; Lian J; Zhang Y; Wang X; Zhao B Biomed Mater; 2021 Jun; 16(4):. PubMed ID: 34098538 [TBL] [Abstract][Full Text] [Related]
24. 3D-printed nanohydroxyapatite/methylacrylylated silk fibroin scaffold for repairing rat skull defects. Huiwen W; Shuai L; Jia X; Shihao D; Kun W; Runhuai Y; Haisheng Q; Jun L J Biol Eng; 2024 Mar; 18(1):22. PubMed ID: 38515148 [TBL] [Abstract][Full Text] [Related]
25. Synthesis of and in vitro and in vivo evaluation of a novel TGF-β1-SF-CS three-dimensional scaffold for bone tissue engineering. Tong S; Xu DP; Liu ZM; Du Y; Wang XK Int J Mol Med; 2016 Aug; 38(2):367-80. PubMed ID: 27352815 [TBL] [Abstract][Full Text] [Related]
26. The osteogenic effects of sponges synthesized with biomaterials and nano-hydroxyapatite. Lee WJ; Cho K; Jung G; Kim AY; Kim GW Biomed Phys Eng Express; 2023 Jun; 9(4):. PubMed ID: 37276854 [TBL] [Abstract][Full Text] [Related]
27. Quercetin Inlaid Silk Fibroin/Hydroxyapatite Scaffold Promotes Enhanced Osteogenesis. Song JE; Tripathy N; Lee DH; Park JH; Khang G ACS Appl Mater Interfaces; 2018 Oct; 10(39):32955-32964. PubMed ID: 30188112 [TBL] [Abstract][Full Text] [Related]
28. Silk-Hydroxyapatite Nanoscale Scaffolds with Programmable Growth Factor Delivery for Bone Repair. Ding Z; Fan Z; Huang X; Lu Q; Xu W; Kaplan DL ACS Appl Mater Interfaces; 2016 Sep; 8(37):24463-70. PubMed ID: 27579921 [TBL] [Abstract][Full Text] [Related]
29. Investigation of synergistic effects of inductive and conductive factors in gelatin-based cryogels for bone tissue engineering. Liao HT; Shalumon KT; Chang KH; Sheu C; Chen JP J Mater Chem B; 2016 Mar; 4(10):1827-1841. PubMed ID: 32263060 [TBL] [Abstract][Full Text] [Related]
30. Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: Effect of particle size on physico-mechanical properties and in vitro cellular behavior. Bidgoli MR; Alemzadeh I; Tamjid E; Khafaji M; Vossoughi M Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109688. PubMed ID: 31349405 [TBL] [Abstract][Full Text] [Related]
31. Human Adipose-Derived Mesenchymal Stem Cells-Incorporated Silk Fibroin as a Potential Bio-Scaffold in Guiding Bone Regeneration. Sartika D; Wang CH; Wang DH; Cherng JH; Chang SJ; Fan GY; Wang YW; Lee CH; Hong PD; Wang CC Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32272682 [TBL] [Abstract][Full Text] [Related]
32. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation. Paşcu EI; Cahill PA; Stokes J; McGuinness GB J Biomater Appl; 2016 Apr; 30(9):1334-49. PubMed ID: 26767394 [TBL] [Abstract][Full Text] [Related]
33. Biomimetic porous silk fibroin/biphasic calcium phosphate scaffold for bone tissue regeneration. Liu B; Gao X; Sun Z; Fang Q; Geng X; Zhang H; Wang G; Dou Y; Hu P; Zhu K; Wang D; Xing J; Liu D; Zhang M; Li R J Mater Sci Mater Med; 2018 Dec; 30(1):4. PubMed ID: 30569403 [TBL] [Abstract][Full Text] [Related]
34. Nano-hydroxyapatite mineralized silk fibroin porous scaffold for tooth extraction site preservation. Nie L; Zhang H; Ren A; Li Y; Fu G; Cannon RD; Ji P; Wu X; Yang S Dent Mater; 2019 Oct; 35(10):1397-1407. PubMed ID: 31395452 [TBL] [Abstract][Full Text] [Related]
35. Biomimetic fabrication of sr-silk fibroin co-assembly hydroxyapatite based microspheres with angiogenic and osteogenic properties for bone tissue engineering. Liu Y; Shi C; Ming P; Yuan L; Jiang X; Jiang M; Cai R; Lan X; Xiao J; Tao G Mater Today Bio; 2024 Apr; 25():101011. PubMed ID: 38445010 [TBL] [Abstract][Full Text] [Related]
36. 3-D mineralized silk fibroin/polycaprolactone composite scaffold modified with polyglutamate conjugated with BMP-2 peptide for bone tissue engineering. Luo J; Zhang H; Zhu J; Cui X; Gao J; Wang X; Xiong J Colloids Surf B Biointerfaces; 2018 Mar; 163():369-378. PubMed ID: 29335199 [TBL] [Abstract][Full Text] [Related]
37. Composite scaffolds loaded with bone mesenchymal stem cells promote the repair of radial bone defects in rabbit model. Ruan SQ; Deng J; Yan L; Huang WL Biomed Pharmacother; 2018 Jan; 97():600-606. PubMed ID: 29101803 [TBL] [Abstract][Full Text] [Related]
38. Polydopamine-coated biomimetic bone scaffolds loaded with exosomes promote osteogenic differentiation of BMSC and bone regeneration. Zhou Y; Deng G; She H; Bai F; Xiang B; Zhou J; Zhang S Regen Ther; 2023 Jun; 23():25-36. PubMed ID: 37063095 [TBL] [Abstract][Full Text] [Related]
39. Sustained release of naringin from silk-fibroin-nanohydroxyapatite scaffold for the enhancement of bone regeneration. Zhao ZH; Ma XL; Ma JX; Kang JY; Zhang Y; Guo Y Mater Today Bio; 2022 Jan; 13():100206. PubMed ID: 35128373 [TBL] [Abstract][Full Text] [Related]