These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33435126)

  • 21. Ductility improvement due to martensite α' decomposition in porous Ti-6Al-4V parts produced by selective laser melting for orthopedic implants.
    Sallica-Leva E; Caram R; Jardini AL; Fogagnolo JB
    J Mech Behav Biomed Mater; 2016 Feb; 54():149-58. PubMed ID: 26458113
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrochemical corrosion behavior and elasticity properties of Ti-6Al-xFe alloys for biomedical applications.
    Lu J; Zhao Y; Niu H; Zhang Y; Du Y; Zhang W; Huo W
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():36-44. PubMed ID: 26952395
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of Au and Ge Additions on the Microstructures and Properties of Ag-1.5Cu-0.1Y Alloys.
    Zhang D; Zhang Q; Li S; Yang H
    Materials (Basel); 2019 Jan; 12(1):. PubMed ID: 30609702
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of Magnetic Stirring on Microstructures and Properties of Ag-1.5Cu-1.0Y Alloy.
    Zhang D; Yang H; Zhang Q
    Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35955172
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Influence of Heat Treatment Temperature on Microstructures and Mechanical Properties of Titanium Alloy Fabricated by Laser Melting Deposition.
    Wang W; Xu X; Ma R; Xu G; Liu W; Xing F
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32942530
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys.
    Chen M; Zhang E; Zhang L
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():350-60. PubMed ID: 26952433
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microstructure and Selective Corrosion of Alloy 625 Obtained by Means of Laser Powder Bed Fusion.
    Cabrini M; Lorenzi S; Testa C; Brevi F; Biamino S; Fino P; Manfredi D; Marchese G; Calignano F; Pastore T
    Materials (Basel); 2019 May; 12(11):. PubMed ID: 31146366
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the texture, phase and tensile properties of commercially pure Ti produced via selective laser melting assisted by static magnetic field.
    Kang N; Yuan H; Coddet P; Ren Z; Bernage C; Liao H; Coddet C
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):405-407. PubMed ID: 27770909
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of extrusion processing on the microstructure, mechanical properties, biocorrosion properties and antibacterial properties of Ti-Cu sintered alloys.
    Zhang E; Li S; Ren J; Zhang L; Han Y
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():760-8. PubMed ID: 27612770
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anti-bacterium influenced corrosion effect of antibacterial Ti-3Cu alloy in Staphylococcus aureus suspension for biomedical application.
    Zhang Z; Zheng G; Li H; Yang L; Wang X; Qin G; Zhang E
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():376-384. PubMed ID: 30423720
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Slurry Erosion-Corrosion Characteristics of As-Built Ti-6Al-4V Manufactured by Selective Laser Melting.
    Aldahash SA; Abdelaal O; Abdelrhman Y
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32911629
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comparison of corrosion resistance of cobalt-chromium-molybdenum metal ceramic alloy fabricated with selective laser melting and traditional processing.
    Zeng L; Xiang N; Wei B
    J Prosthet Dent; 2014 Nov; 112(5):1217-24. PubMed ID: 24836284
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selective Laser Melting Produced Ti-6Al-4V: Post-Process Heat Treatments to Achieve Superior Tensile Properties.
    Ter Haar GM; Becker TH
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29342079
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preliminary study on the corrosion resistance, antibacterial activity and cytotoxicity of selective-laser-melted Ti6Al4V-xCu alloys.
    Guo S; Lu Y; Wu S; Liu L; He M; Zhao C; Gan Y; Lin J; Luo J; Xu X; Lin J
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():631-640. PubMed ID: 28024632
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Heat Treatment Influence on the Microstructure and Hardness of TC4 Titanium Alloy Manufactured via Selective Laser Melting.
    Zhao ZY; Li L; Bai PK; Jin Y; Wu LY; Li J; Guan RG; Qu HQ
    Materials (Basel); 2018 Jul; 11(8):. PubMed ID: 30061504
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Construction of Ti-Nb-Ti
    Sato K; Takahashi M; Takada Y
    Dent Mater J; 2020 Jun; 39(3):422-428. PubMed ID: 31969544
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microstructure, mechanical properties, castability and in vitro biocompatibility of Ti-Bi alloys developed for dental applications.
    Qiu KJ; Liu Y; Zhou FY; Wang BL; Li L; Zheng YF; Liu YH
    Acta Biomater; 2015 Mar; 15():254-65. PubMed ID: 25595472
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biocompatibility of new low-cost (α + β)-type Ti-Mo-Fe alloys for long-term implantation.
    Abdelrhman Y; Gepreel MA; Kobayashi S; Okano S; Okamoto T
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():552-562. PubMed ID: 30889729
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro biocompatibility of CoCrMo dental alloys fabricated by selective laser melting.
    Hedberg YS; Qian B; Shen Z; Virtanen S; Wallinder IO
    Dent Mater; 2014 May; 30(5):525-34. PubMed ID: 24598762
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Laser surface modification of Ti--6Al--4V: wear and corrosion characterization in simulated biofluid.
    Singh R; Kurella A; Dahotre NB
    J Biomater Appl; 2006 Jul; 21(1):49-73. PubMed ID: 16443617
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.