These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 33435141)

  • 1. Estimation and Analysis of GNSS Differential Code Biases (DCBs) Using a Multi-Spacing Software Receiver.
    Wang Y; Zhao L; Gao Y
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33435141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Impact of Satellite Time Group Delay and Inter-Frequency Differential Code Bias Corrections on Multi-GNSS Combined Positioning.
    Ge Y; Zhou F; Sun B; Wang S; Shi B
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28300787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Simple Approach to Determine Single-Receiver Differential Code Bias Using Precise Point Positioning.
    Zhang F; Tang L; Li J; Du X
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GNSS-Based Non-Negative Absolute Ionosphere Total Electron Content, its Spatial Gradients, Time Derivatives and Differential Code Biases: Bounded-Variable Least-Squares and Taylor Series.
    Yasyukevich Y; Mylnikova A; Vesnin A
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33036362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating BDS-3 Satellite Differential Code Biases with the Single-Frequency Uncombined PPP Model.
    Wu J; Gao S; Li D
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benefits of Multi-Constellation/Multi-Frequency GNSS in a Tightly Coupled GNSS/IMU/Odometry Integration Algorithm.
    Reuper B; Becker M; Leinen S
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30213078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global Ionospheric Modelling using Multi-GNSS: BeiDou, Galileo, GLONASS and GPS.
    Ren X; Zhang X; Xie W; Zhang K; Yuan Y; Li X
    Sci Rep; 2016 Sep; 6():33499. PubMed ID: 27629988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precise Point Positioning Using Triple GNSS Constellations in Various Modes.
    Afifi A; El-Rabbany A
    Sensors (Basel); 2016 May; 16(6):. PubMed ID: 27240376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-Time Global Ionospheric Map and Its Application in Single-Frequency Positioning.
    Zhang L; Yao Y; Peng W; Shan L; He Y; Kong J
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30845733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal Particle Filter Weight for Bayesian Direct Position Estimation in a GNSS Receiver.
    Dampf J; Frankl K; Pany T
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30127301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the convergence of ionospheric constrained precise point positioning (IC-PPP) based on undifferential uncombined raw GNSS observations.
    Zhang H; Gao Z; Ge M; Niu X; Huang L; Tu R; Li X
    Sensors (Basel); 2013 Nov; 13(11):15708-25. PubMed ID: 24253190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Unified Form of Code Biases and Positioning Performance Analysis in Global Positioning System (GPS)/BeiDou Navigation Satellite System (BDS) Precise Point Positioning Using Real Triple-Frequency Data.
    Liu P; Qin H; Cong L
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31151147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Enhanced FGI-GSRx Software-Defined Receiver for the Execution of Long Datasets.
    Liaquat M; Bhuiyan MZH; Islam S; Pääkkönen I; Kaasalainen S
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global Navigation Satellite System Real-Time Kinematic Positioning Framework for Precise Operation of a Swarm of Moving Vehicles.
    Kim E; Kim SK
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Flexible System-on-Chip Field-Programmable Gate Array Architecture for Prototyping Experimental Global Navigation Satellite System Receivers.
    Majoral M; Fernández-Prades C; Arribas J
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research of Eliminating the Day-Boundary Discontinuities in GNSS Carrier Phase Time Transfer through Network Processing.
    Zhang X; Guo J; Hu Y; Zhao D; He Z
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32375378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing Global Ionosphere TEC Maps with Satellite Altimetry and Ionospheric Radio Occultation Observations.
    Li W; Huang L; Zhang S; Chai Y
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31842443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Approach to Speed up Single-Frequency PPP Convergence with Quad-Constellation GNSS and GIM.
    Cai C; Gong Y; Gao Y; Kuang C
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28587305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Fine-Tuned Positioning Algorithm for Space-Borne GNSS Timing Receivers.
    Chen X; Wei Q; Zhan Y; Ma T
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32325819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing Global Navigation Satellite Systems network real-time kinematic infrastructure for homogeneous positioning performance from the perspective of tropospheric effects.
    Yu C; Penna NT; Li Z
    Proc Math Phys Eng Sci; 2020 Oct; 476(2242):20200248. PubMed ID: 33214759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.