BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 33435174)

  • 1. Controlled Synthesis of Polyphosphazenes with Chain-Capping Agents.
    Matyjaszewski K; Montague RA
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33435174
    [No Abstract]   [Full Text] [Related]  

  • 2. Chain-end-functionalized polyphosphazenes via a one-pot phosphine-mediated living polymerization.
    Wilfert S; Henke H; Schoefberger W; Brüggemann O; Teasdale I
    Macromol Rapid Commun; 2014 Jun; 35(12):1135-41. PubMed ID: 24700544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and optical properties of sulfur-containing monomers and cyclomatrix polyphosphazenes.
    Fushimi T; Allcock HR
    Dalton Trans; 2010 Jun; 39(22):5349-55. PubMed ID: 20442910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradable glycine-based photo-polymerizable polyphosphazenes for use as scaffolds for tissue regeneration.
    Rothemund S; Aigner TB; Iturmendi A; Rigau M; Husár B; Hildner F; Oberbauer E; Prambauer M; Olawale G; Forstner R; Liska R; Schröder KR; Brüggemann O; Teasdale I
    Macromol Biosci; 2015 Mar; 15(3):351-63. PubMed ID: 25355036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hetero and homo α,ω-chain-end functionalized polyphosphazenes.
    Strasser P; Plavcan O; Ajvazi E; Henke H; Brüggemann O; Teasdale I
    J Polym Sci (2020); 2022 Jul; 60(13):2000-2007. PubMed ID: 35915665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis, characterization, and osteocompatibility evaluation of novel alanine-based polyphosphazenes.
    Nair LS; Lee DA; Bender JD; Barrett EW; Greish YE; Brown PW; Allcock HR; Laurencin CT
    J Biomed Mater Res A; 2006 Jan; 76(1):206-13. PubMed ID: 16265637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyphosphazene Based Star-Branched and Dendritic Molecular Brushes.
    Henke H; Posch S; Brüggemann O; Teasdale I
    Macromol Rapid Commun; 2016 May; 37(9):769-74. PubMed ID: 27027404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable polyphosphazenes for drug delivery applications.
    Lakshmi S; Katti DS; Laurencin CT
    Adv Drug Deliv Rev; 2003 Apr; 55(4):467-82. PubMed ID: 12706046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Branched Macromolecular Architectures for Degradable, Multifunctional Phosphorus-Based Polymers.
    Henke H; Brüggemann O; Teasdale I
    Macromol Rapid Commun; 2017 Feb; 38(4):. PubMed ID: 28044384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustained release of hydrophilic drug from polyphosphazenes/poly(methyl methacrylate) based microspheres and their degradation study.
    Akram M; Yu H; Wang L; Khalid H; Abbasi NM; Zain-ul-Abdin ; Chen Y; Ren F; Saleem M
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():169-79. PubMed ID: 26478300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. End capping ring-opening olefin metathesis polymerization polymers with vinyl lactones.
    Hilf S; Grubbs RH; Kilbinger AF
    J Am Chem Soc; 2008 Aug; 130(33):11040-8. PubMed ID: 18646851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of side group chemistry on the properties of biodegradable L-alanine cosubstituted polyphosphazenes.
    Singh A; Krogman NR; Sethuraman S; Nair LS; Sturgeon JL; Brown PW; Laurencin CT; Allcock HR
    Biomacromolecules; 2006 Mar; 7(3):914-8. PubMed ID: 16529431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel micelles from graft polyphosphazenes as potential anti-cancer drug delivery systems: drug encapsulation and in vitro evaluation.
    Zheng C; Qiu L; Yao X; Zhu K
    Int J Pharm; 2009 May; 373(1-2):133-40. PubMed ID: 19429298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Doxorubicin-loaded polymeric micelles based on amphiphilic polyphosphazenes with poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) and ethyl glycinate as side groups: synthesis, preparation and in vitro evaluation.
    Qiu LY; Wu XL; Jin Y
    Pharm Res; 2009 Apr; 26(4):946-57. PubMed ID: 19101785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanism of the phosphoramidite synthesis of polynucleotides.
    Russell MA; Laws AP; Atherton JH; Page MI
    Org Biomol Chem; 2008 Sep; 6(18):3270-5. PubMed ID: 18802632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of aryloxy initiators on the living and immortal polymerization of lactide.
    Chile LE; Ebrahimi T; Wong A; Aluthge DC; Hatzikiriakos SG; Mehrkhodavandi P
    Dalton Trans; 2017 May; 46(20):6723-6733. PubMed ID: 28488706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, synthesis and evaluation of antimalarial potential of polyphosphazene linked combination therapy of primaquine and dihydroartemisinin.
    Kumar S; Singh RK; Sharma R; Murthy RS; Bhardwaj TR
    Eur J Pharm Sci; 2015 Jan; 66():123-37. PubMed ID: 25312346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphazene Bases as Organocatalysts for Ring-Opening Polymerization of Cyclic Esters.
    Liu S; Ren C; Zhao N; Shen Y; Li Z
    Macromol Rapid Commun; 2018 Dec; 39(24):e1800485. PubMed ID: 30276913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis, characterization, and biocompatibility of biodegradable hyperbranched polyglycerols from acid-cleavable ketal group functionalized initiators.
    Shenoi RA; Lai BF; Kizhakkedathu JN
    Biomacromolecules; 2012 Oct; 13(10):3018-30. PubMed ID: 22920950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly[(amino acid ester)phosphazenes] as substrates for the controlled release of small molecules.
    Allcock HR; Pucher SR; Scopelianos AG
    Biomaterials; 1994 Jun; 15(8):563-9. PubMed ID: 7948574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.