These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 33435199)
1. MicroRNA-Mediated Responses to Cadmium Stress in Pegler JL; Oultram JMJ; Nguyen DQ; Grof CPL; Eamens AL Plants (Basel); 2021 Jan; 10(1):. PubMed ID: 33435199 [TBL] [Abstract][Full Text] [Related]
2. DRB1, DRB2 and DRB4 Are Required for Appropriate Regulation of the microRNA399/ Pegler JL; Oultram JMJ; Grof CPL; Eamens AL Plants (Basel); 2019 May; 8(5):. PubMed ID: 31086001 [TBL] [Abstract][Full Text] [Related]
3. DRB2 is required for microRNA biogenesis in Arabidopsis thaliana. Eamens AL; Kim KW; Curtin SJ; Waterhouse PM PLoS One; 2012; 7(4):e35933. PubMed ID: 22545148 [TBL] [Abstract][Full Text] [Related]
4. Chimeric DCL1-Partnering Proteins Provide Insights into the MicroRNA Pathway. Reis RS; Eamens AL; Roberts TH; Waterhouse PM Front Plant Sci; 2015; 6():1201. PubMed ID: 26779232 [TBL] [Abstract][Full Text] [Related]
5. DRB2, DRB3 and DRB5 function in a non-canonical microRNA pathway in Arabidopsis thaliana. Eamens AL; Wook Kim K; Waterhouse PM Plant Signal Behav; 2012 Oct; 7(10):1224-9. PubMed ID: 22902697 [TBL] [Abstract][Full Text] [Related]
6. Double-stranded RNA-binding protein DRB3 negatively regulates anthocyanin biosynthesis by modulating PAP1 expression in Arabidopsis thaliana. Sawano H; Matsuzaki T; Usui T; Tabara M; Fukudome A; Kanaya A; Tanoue D; Hiraguri A; Horiguchi G; Ohtani M; Demura T; Kozaki T; Ishii K; Moriyama H; Fukuhara T J Plant Res; 2017 Jan; 130(1):45-55. PubMed ID: 27995376 [TBL] [Abstract][Full Text] [Related]
7. Profiling the Abiotic Stress Responsive microRNA Landscape of Pegler JL; Oultram JMJ; Grof CPL; Eamens AL Plants (Basel); 2019 Mar; 8(3):. PubMed ID: 30857364 [TBL] [Abstract][Full Text] [Related]
8. MicroRNA Regulatory Mechanisms Play Different Roles in Arabidopsis. Reis RS; Hart-Smith G; Eamens AL; Wilkins MR; Waterhouse PM J Proteome Res; 2015 Nov; 14(11):4743-51. PubMed ID: 26387911 [TBL] [Abstract][Full Text] [Related]
9. The CTR/COPT-dependent copper uptake and SPL7-dependent copper deficiency responses are required for basal cadmium tolerance in A. thaliana. Gayomba SR; Jung HI; Yan J; Danku J; Rutzke MA; Bernal M; Krämer U; Kochian LV; Salt DE; Vatamaniuk OK Metallomics; 2013 Sep; 5(9):1262-75. PubMed ID: 23835944 [TBL] [Abstract][Full Text] [Related]
10. Molecular Manipulation of the miR396 and miR399 Expression Modules Alters the Response of Pegler JL; Nguyen DQ; Oultram JMJ; Grof CPL; Eamens AL Plants (Basel); 2021 Nov; 10(12):. PubMed ID: 34961041 [TBL] [Abstract][Full Text] [Related]
11. Effects of Cadmium Treatment on the Uptake and Translocation of Sulfate in Arabidopsis thaliana. Yamaguchi C; Takimoto Y; Ohkama-Ohtsu N; Hokura A; Shinano T; Nakamura T; Suyama A; Maruyama-Nakashita A Plant Cell Physiol; 2016 Nov; 57(11):2353-2366. PubMed ID: 27590710 [TBL] [Abstract][Full Text] [Related]
12. Toxicity responses of Cu and Cd: the involvement of miRNAs and the transcription factor SPL7. Gielen H; Remans T; Vangronsveld J; Cuypers A BMC Plant Biol; 2016 Jun; 16(1):145. PubMed ID: 27352843 [TBL] [Abstract][Full Text] [Related]
13. MicroRNA-mRNA expression profiles and their potential role in cadmium stress response in Brassica napus. Fu Y; Mason AS; Zhang Y; Lin B; Xiao M; Fu D; Yu H BMC Plant Biol; 2019 Dec; 19(1):570. PubMed ID: 31856702 [TBL] [Abstract][Full Text] [Related]
14. Regulation of cadmium tolerance and accumulation by miR156 in Arabidopsis. Zhang L; Ding H; Jiang H; Wang H; Chen K; Duan J; Feng S; Wu G Chemosphere; 2020 Mar; 242():125168. PubMed ID: 31678850 [TBL] [Abstract][Full Text] [Related]
15. Strontium stress disrupts miRNA biogenesis by reducing HYL1 protein levels in Arabidopsis. Pyo Y; Kim GM; Choi SW; Song CY; Yang SW; Jung IL Ecotoxicol Environ Saf; 2020 Nov; 204():111056. PubMed ID: 32763566 [TBL] [Abstract][Full Text] [Related]
16. Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis. Brunetti P; Zanella L; De Paolis A; Di Litta D; Cecchetti V; Falasca G; Barbieri M; Altamura MM; Costantino P; Cardarelli M J Exp Bot; 2015 Jul; 66(13):3815-29. PubMed ID: 25900618 [TBL] [Abstract][Full Text] [Related]
17. Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal-induced oxidative stress. Collin VC; Eymery F; Genty B; Rey P; Havaux M Plant Cell Environ; 2008 Feb; 31(2):244-57. PubMed ID: 17996014 [TBL] [Abstract][Full Text] [Related]
18. A cadmium stress-responsive gene AtFC1 confers plant tolerance to cadmium toxicity. Song J; Feng SJ; Chen J; Zhao WT; Yang ZM BMC Plant Biol; 2017 Oct; 17(1):187. PubMed ID: 29084526 [TBL] [Abstract][Full Text] [Related]
19. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Park J; Song WY; Ko D; Eom Y; Hansen TH; Schiller M; Lee TG; Martinoia E; Lee Y Plant J; 2012 Jan; 69(2):278-88. PubMed ID: 21919981 [TBL] [Abstract][Full Text] [Related]
20. Characterization of wheat miRNAs and their target genes responsive to cadmium stress. Qiu Z; Hai B; Guo J; Li Y; Zhang L Plant Physiol Biochem; 2016 Apr; 101():60-67. PubMed ID: 26854408 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]