BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 33435356)

  • 1. SAAFEC-SEQ: A Sequence-Based Method for Predicting the Effect of Single Point Mutations on Protein Thermodynamic Stability.
    Li G; Panday SK; Alexov E
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33435356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SAAFEC: Predicting the Effect of Single Point Mutations on Protein Folding Free Energy Using a Knowledge-Modified MM/PBSA Approach.
    Getov I; Petukh M; Alexov E
    Int J Mol Sci; 2016 Apr; 17(4):512. PubMed ID: 27070572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PROST: AlphaFold2-aware Sequence-Based Predictor to Estimate Protein Stability Changes upon Missense Mutations.
    Iqbal S; Ge F; Li F; Akutsu T; Zheng Y; Gasser RB; Yu DJ; Webb GI; Song J
    J Chem Inf Model; 2022 Sep; 62(17):4270-4282. PubMed ID: 35973091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SAAMBE-SEQ: a sequence-based method for predicting mutation effect on protein-protein binding affinity.
    Li G; Pahari S; Murthy AK; Liang S; Fragoza R; Yu H; Alexov E
    Bioinformatics; 2021 May; 37(7):992-999. PubMed ID: 32866236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the Effect of Amino Acid Single-Point Mutations on Protein Stability-Large-Scale Validation of MD-Based Relative Free Energy Calculations.
    Steinbrecher T; Zhu C; Wang L; Abel R; Negron C; Pearlman D; Feyfant E; Duan J; Sherman W
    J Mol Biol; 2017 Apr; 429(7):948-963. PubMed ID: 27964946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting folding free energy changes upon single point mutations.
    Zhang Z; Wang L; Gao Y; Zhang J; Zhenirovskyy M; Alexov E
    Bioinformatics; 2012 Mar; 28(5):664-71. PubMed ID: 22238268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. INPS: predicting the impact of non-synonymous variations on protein stability from sequence.
    Fariselli P; Martelli PL; Savojardo C; Casadio R
    Bioinformatics; 2015 Sep; 31(17):2816-21. PubMed ID: 25957347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. STRUM: structure-based prediction of protein stability changes upon single-point mutation.
    Quan L; Lv Q; Zhang Y
    Bioinformatics; 2016 Oct; 32(19):2936-46. PubMed ID: 27318206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SAMPDI-3D: predicting the effects of protein and DNA mutations on protein-DNA interactions.
    Li G; Panday SK; Peng Y; Alexov E
    Bioinformatics; 2021 Nov; 37(21):3760-3765. PubMed ID: 34343273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EASE-MM: Sequence-Based Prediction of Mutation-Induced Stability Changes with Feature-Based Multiple Models.
    Folkman L; Stantic B; Sattar A; Zhou Y
    J Mol Biol; 2016 Mar; 428(6):1394-1405. PubMed ID: 26804571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PoPMuSiC 2.1: a web server for the estimation of protein stability changes upon mutation and sequence optimality.
    Dehouck Y; Kwasigroch JM; Gilis D; Rooman M
    BMC Bioinformatics; 2011 May; 12():151. PubMed ID: 21569468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SAAMBE: Webserver to Predict the Charge of Binding Free Energy Caused by Amino Acids Mutations.
    Petukh M; Dai L; Alexov E
    Int J Mol Sci; 2016 Apr; 17(4):547. PubMed ID: 27077847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurately Predicting Mutation-Caused Stability Changes from Protein Sequences Using Extreme Gradient Boosting.
    Lv X; Chen J; Lu Y; Chen Z; Xiao N; Yang Y
    J Chem Inf Model; 2020 Apr; 60(4):2388-2395. PubMed ID: 32203653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure.
    Capriotti E; Fariselli P; Casadio R
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W306-10. PubMed ID: 15980478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DDGun: an untrained method for the prediction of protein stability changes upon single and multiple point variations.
    Montanucci L; Capriotti E; Frank Y; Ben-Tal N; Fariselli P
    BMC Bioinformatics; 2019 Jul; 20(Suppl 14):335. PubMed ID: 31266447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure Based Thermostability Prediction Models for Protein Single Point Mutations with Machine Learning Tools.
    Jia L; Yarlagadda R; Reed CC
    PLoS One; 2015; 10(9):e0138022. PubMed ID: 26361227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. iPTREE-STAB: interpretable decision tree based method for predicting protein stability changes upon mutations.
    Huang LT; Gromiha MM; Ho SY
    Bioinformatics; 2007 May; 23(10):1292-3. PubMed ID: 17379687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. iSEE: Interface structure, evolution, and energy-based machine learning predictor of binding affinity changes upon mutations.
    Geng C; Vangone A; Folkers GE; Xue LC; Bonvin AMJJ
    Proteins; 2019 Feb; 87(2):110-119. PubMed ID: 30417935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating the Effect of Single-Point Mutations on Protein Thermodynamic Stability and Analyzing the Mutation Landscape of the p53 Protein.
    Banerjee A; Mitra P
    J Chem Inf Model; 2020 Jun; 60(6):3315-3323. PubMed ID: 32401507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning integration for predicting the effect of single amino acid substitutions on protein stability.
    Ozen A; Gönen M; Alpaydan E; Haliloğlu T
    BMC Struct Biol; 2009 Oct; 9():66. PubMed ID: 19840377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.