These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 33435356)

  • 41. Clustered tree regression to learn protein energy change with mutated amino acid.
    Tu H; Han Y; Wang Z; Li J
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36124753
    [TBL] [Abstract][Full Text] [Related]  

  • 42. SDM--a server for predicting effects of mutations on protein stability and malfunction.
    Worth CL; Preissner R; Blundell TL
    Nucleic Acids Res; 2011 Jul; 39(Web Server issue):W215-22. PubMed ID: 21593128
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Robust prediction of mutation-induced protein stability change by property encoding of amino acids.
    Kang S; Chen G; Xiao G
    Protein Eng Des Sel; 2009 Feb; 22(2):75-83. PubMed ID: 19054789
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Physicochemical feature-based classification of amino acid mutations.
    Shen B; Bai J; Vihinen M
    Protein Eng Des Sel; 2008 Jan; 21(1):37-44. PubMed ID: 18096555
    [TBL] [Abstract][Full Text] [Related]  

  • 45. DDGun: an untrained predictor of protein stability changes upon amino acid variants.
    Montanucci L; Capriotti E; Birolo G; Benevenuta S; Pancotti C; Lal D; Fariselli P
    Nucleic Acids Res; 2022 Jul; 50(W1):W222-W227. PubMed ID: 35524565
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Predicting the stability of mutant proteins by computational approaches: an overview.
    Marabotti A; Scafuri B; Facchiano A
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32496523
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Predicting protein stability changes upon single-point mutation: a thorough comparison of the available tools on a new dataset.
    Pancotti C; Benevenuta S; Birolo G; Alberini V; Repetto V; Sanavia T; Capriotti E; Fariselli P
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35021190
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structure-based prediction of the effects of a missense variant on protein stability.
    Yang Y; Chen B; Tan G; Vihinen M; Shen B
    Amino Acids; 2013 Mar; 44(3):847-55. PubMed ID: 23064876
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparing Supervised Learning and Rigorous Approach for Predicting Protein Stability upon Point Mutations in Difficult Targets.
    Kurniawan J; Ishida T
    J Chem Inf Model; 2023 Nov; 63(21):6778-6788. PubMed ID: 37897811
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Predicting protein thermal stability changes upon point mutations using statistical potentials: Introducing HoTMuSiC.
    Pucci F; Bourgeas R; Rooman M
    Sci Rep; 2016 Mar; 6():23257. PubMed ID: 26988870
    [TBL] [Abstract][Full Text] [Related]  

  • 51. INPS-MD: a web server to predict stability of protein variants from sequence and structure.
    Savojardo C; Fariselli P; Martelli PL; Casadio R
    Bioinformatics; 2016 Aug; 32(16):2542-4. PubMed ID: 27153629
    [TBL] [Abstract][Full Text] [Related]  

  • 52. NeEMO: a method using residue interaction networks to improve prediction of protein stability upon mutation.
    Giollo M; Martin AJ; Walsh I; Ferrari C; Tosatto SC
    BMC Genomics; 2014; 15 Suppl 4(Suppl 4):S7. PubMed ID: 25057121
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A protein evolution model with independent sites that reproduces site-specific amino acid distributions from the Protein Data Bank.
    Bastolla U; Porto M; Roman HE; Vendruscolo M
    BMC Evol Biol; 2006 May; 6():43. PubMed ID: 16737532
    [TBL] [Abstract][Full Text] [Related]  

  • 54. TKSA-MC: A web server for rational mutation through the optimization of protein charge interactions.
    Contessoto VG; de Oliveira VM; Fernandes BR; Slade GG; Leite VBP
    Proteins; 2018 Nov; 86(11):1184-1188. PubMed ID: 30218467
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Importance of mutant position in Ramachandran plot for predicting protein stability of surface mutations.
    Gromiha MM; Oobatake M; Kono H; Uedaira H; Sarai A
    Biopolymers; 2002 Aug; 64(4):210-20. PubMed ID: 12115138
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transfer learning to leverage larger datasets for improved prediction of protein stability changes.
    Dieckhaus H; Brocidiacono M; Randolph NZ; Kuhlman B
    Proc Natl Acad Sci U S A; 2024 Feb; 121(6):e2314853121. PubMed ID: 38285937
    [TBL] [Abstract][Full Text] [Related]  

  • 57. PANDA: Predicting the change in proteins binding affinity upon mutations by finding a signal in primary structures.
    Abbasi WA; Abbas SA; Andleeb S
    J Bioinform Comput Biol; 2021 Aug; 19(4):2150015. PubMed ID: 34126874
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Differentiating stable and unstable protein using convolution neural network and molecular dynamics simulations.
    Suyash S; Jha A; Maitra P; Punia P; Mishra A
    Comput Biol Chem; 2024 Jun; 110():108081. PubMed ID: 38677012
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Deep geometric representations for modeling effects of mutations on protein-protein binding affinity.
    Liu X; Luo Y; Li P; Song S; Peng J
    PLoS Comput Biol; 2021 Aug; 17(8):e1009284. PubMed ID: 34347784
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Prediction of protein disorder on amino acid substitutions.
    Anoosha P; Sakthivel R; Gromiha MM
    Anal Biochem; 2015 Dec; 491():18-22. PubMed ID: 26348538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.