These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 33435369)

  • 1. Using Accelerometer Data to Tune the Parameters of an Extended Kalman Filter for Optical Motion Capture: Preliminary Application to Gait Analysis.
    Cuadrado J; Michaud F; Lugrís U; Pérez Soto M
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33435369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fourier-based integration of quasi-periodic gait accelerations for drift-free displacement estimation using inertial sensors.
    Sabatini AM; Ligorio G; Mannini A
    Biomed Eng Online; 2015 Nov; 14():106. PubMed ID: 26597696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gait speed estimation using Kalman Filtering on inertial measurement unit data.
    Alam MN; Khan Munia TT; Fazel-Rezai R
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2406-2409. PubMed ID: 29060383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A smart device inertial-sensing method for gait analysis.
    Steins D; Sheret I; Dawes H; Esser P; Collett J
    J Biomech; 2014 Nov; 47(15):3780-5. PubMed ID: 25305689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A New Quaternion-Based Kalman Filter for Human Body Motion Tracking Using the Second Estimator of the Optimal Quaternion Algorithm and the Joint Angle Constraint Method with Inertial and Magnetic Sensors.
    Duan Y; Zhang X; Li Z
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33113983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On Inertial Body Tracking in the Presence of Model Calibration Errors.
    Miezal M; Taetz B; Bleser G
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27455266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sparse Visual-Inertial Measurement Units Placement for Gait Kinematics Assessment.
    Mallat R; Bonnet V; Dumas R; Adjel M; Venture G; Khalil M; Mohammed S
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1300-1311. PubMed ID: 34138711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of Inertial Sensors to Evaluate Gait Stability.
    Riek PM; Best AN; Wu AR
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multi-segment modelling approach for foot trajectory estimation using inertial sensors.
    Okkalidis N; Marinakis G; Gatt A; Bugeja MK; Camilleri KP; Falzon O
    Gait Posture; 2020 Jan; 75():22-27. PubMed ID: 31590066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multi-sensor human gait dataset captured through an optical system and inertial measurement units.
    Santos G; Wanderley M; Tavares T; Rocha A
    Sci Data; 2022 Sep; 9(1):545. PubMed ID: 36071060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fusing motion-capture and inertial measurements for improved joint state recovery: An application for sit-to-stand actions.
    Matthew RP; Seko S; Bajcsy R
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1893-1896. PubMed ID: 29060261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Kalman Filter for Human Motion Tracking With an Inertial-Based Dynamic Inclinometer.
    Ligorio G; Sabatini AM
    IEEE Trans Biomed Eng; 2015 Aug; 62(8):2033-43. PubMed ID: 25775483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Body sensor network-based strapdown orientation estimation: application to human locomotion.
    Misgeld BJ; Rüschen D; Kim S; Leonhardt S
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650480. PubMed ID: 24187297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple rule to automatically recognize the orientation of the sagittal plane foot angular velocity for gait analysis using IMUs on the feet of individuals with heterogeneous motor disabilities.
    Carcreff L; Moulin C; Mariani B; Armand S
    J Biomech; 2022 Apr; 135():111055. PubMed ID: 35325752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of gait kinematics and kinetics from inertial sensor data using optimal control of musculoskeletal models.
    Dorschky E; Nitschke M; Seifer AK; van den Bogert AJ; Eskofier BM
    J Biomech; 2019 Oct; 95():109278. PubMed ID: 31472970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Deep Learning Approach for Foot Trajectory Estimation in Gait Analysis Using Inertial Sensors.
    Guimarães V; Sousa I; Correia MV
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic accuracy of inertial measurement units during simple pendulum motion.
    Brodie MA; Walmsley A; Page W
    Comput Methods Biomech Biomed Engin; 2008 Jun; 11(3):235-42. PubMed ID: 18568821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Value of gait analysis for measuring disease severity using inertial sensors in patients with multiple sclerosis: protocol for a systematic review and meta-analysis.
    Vienne-Jumeau A; Quijoux F; Vidal PP; Ricard D
    Syst Rev; 2019 Jan; 8(1):15. PubMed ID: 30621765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Full-State Robust Extended Kalman Filter for Orientation Tracking During Long-Duration Dynamic Tasks Using Magnetic and Inertial Measurement Units.
    Nazarahari M; Rouhani H
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1280-1289. PubMed ID: 34181546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effectiveness of variable-gain Kalman filter based on angle error calculated from acceleration signals in lower limb angle measurement with inertial sensors.
    Teruyama Y; Watanabe T
    Comput Math Methods Med; 2013; 2013():398042. PubMed ID: 24282442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.