These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 33435369)

  • 21. Position Tracking During Human Walking Using an Integrated Wearable Sensing System.
    Zizzo G; Ren L
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29232869
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rhythmic Extended Kalman Filter for Gait Rehabilitation Motion Estimation and Segmentation.
    Joukov V; Bonnet V; Karg M; Venture G; Kulic D
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):407-418. PubMed ID: 28141526
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kalman smoothing improves the estimation of joint kinematics and kinetics in marker-based human gait analysis.
    De Groote F; De Laet T; Jonkers I; De Schutter J
    J Biomech; 2008 Dec; 41(16):3390-8. PubMed ID: 19026414
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gait Analysis in a Box: A System Based on Magnetometer-Free IMUs or Clusters of Optical Markers with Automatic Event Detection.
    Marín J; Blanco T; de la Torre J; Marín JJ
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32545515
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonlinear state-space modeling of human motion using 2-D marker observations.
    Vartiainen P; Bragge T; Arokoski JP; Karjalainen PA
    IEEE Trans Biomed Eng; 2014 Jul; 61(7):2167-78. PubMed ID: 24760898
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Non-rigid alignment pipeline applied to human gait signals acquired with optical motion capture systems and inertial sensors.
    Soussé R; Verdú J; Jauregui R; Ferrer-Roca V; Balocco S
    J Biomech; 2020 Jan; 98():109429. PubMed ID: 31662198
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hand Motion Measurement using Inertial Sensor System and Accurate Improvement by Extended Kalman Filter.
    Kitano K; Ito A; Tsujiuchi N
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6405-6408. PubMed ID: 31947308
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The implementation of inertial sensors for the assessment of temporal parameters of gait in the knee arthroplasty population.
    De Vroey H; Staes F; Weygers I; Vereecke E; Vanrenterghem J; Deklerck J; Van Damme G; Hallez H; Claeys K
    Clin Biomech (Bristol, Avon); 2018 May; 54():22-27. PubMed ID: 29533844
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measuring upper arm elevation using an inertial measurement unit: An exploration of sensor fusion algorithms and gyroscope models.
    Chen H; Schall MC; Fethke NB
    Appl Ergon; 2020 Nov; 89():103187. PubMed ID: 32854821
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimation of Ankle Joint Power during Walking Using Two Inertial Sensors.
    Jiang X; Gholami M; Khoshnam M; Eng JJ; Menon C
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31234451
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Online tracking of the lower body joint angles using IMUs for gait rehabilitation.
    Joukov V; Karg M; Kulic D
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2310-3. PubMed ID: 25570450
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Fuzzy Tuned and Second Estimator of the Optimal Quaternion Complementary Filter for Human Motion Measurement with Inertial and Magnetic Sensors.
    Zhang X; Xiao W
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30340400
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of Noise Covariance Matrices to Improve Orientation Estimation by Kalman Filter.
    Nez A; Fradet L; Marin F; Monnet T; Lacouture P
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30332842
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel accelerometry-based algorithm for the detection of step durations over short episodes of gait in healthy elderly.
    Micó-Amigo ME; Kingma I; Ainsworth E; Walgaard S; Niessen M; van Lummel RC; van Dieën JH
    J Neuroeng Rehabil; 2016 Apr; 13():38. PubMed ID: 27093956
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantification of gait parameters with inertial sensors and inverse kinematics.
    Bötzel K; Olivares A; Cunha JP; Górriz Sáez JM; Weiss R; Plate A
    J Biomech; 2018 Apr; 72():207-214. PubMed ID: 29602474
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Validation of 3-Space Wireless Inertial Measurement Units Using an Industrial Robot.
    Hislop J; Isaksson M; McCormick J; Hensman C
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696071
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wearable inertial sensors provide reliable biomarkers of disease severity in multiple sclerosis: A systematic review and meta-analysis.
    Vienne-Jumeau A; Quijoux F; Vidal PP; Ricard D
    Ann Phys Rehabil Med; 2020 Mar; 63(2):138-147. PubMed ID: 31421274
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of the wireless ultra-miniaturized inertial measurement unit WB-4: preliminary performance evaluation.
    Lin Z; Zecca M; Sessa S; Bartolomeo L; Ishii H; Takanishi A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6927-30. PubMed ID: 22255931
    [TBL] [Abstract][Full Text] [Related]  

  • 39. American society of biomechanics early career achievement award 2020: Toward portable and modular biomechanics labs: How video and IMU fusion will change gait analysis.
    Halilaj E; Shin S; Rapp E; Xiang D
    J Biomech; 2021 Dec; 129():110650. PubMed ID: 34644610
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accuracy of angular displacements and velocities from inertial-based inclinometers.
    Chen H; Schall MC; Fethke N
    Appl Ergon; 2018 Feb; 67():151-161. PubMed ID: 29122186
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.