These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33435388)

  • 1. Effects of Resin Chemistries on the Selective Removal of Industrially Relevant Metal Ions Using Wafer-Enhanced Electrodeionization.
    Ulusoy Erol HB; Hestekin CN; Hestekin JA
    Membranes (Basel); 2021 Jan; 11(1):. PubMed ID: 33435388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80.
    Pehlivan E; Altun T
    J Hazard Mater; 2007 Feb; 140(1-2):299-307. PubMed ID: 17045738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review on recent advances in electrodeionization for various environmental applications.
    Rathi BS; Kumar PS; Parthiban R
    Chemosphere; 2022 Feb; 289():133223. PubMed ID: 34896170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of electrodeionization for phosphate removal.
    Emir G; Engindeniz D; Arar Ö
    Water Environ Res; 2023 Nov; 95(11):e10950. PubMed ID: 38009820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery of nickel ions from simulated electroplating rinse water by electrodeionization process.
    Lu H; Wang J; Yan B; Bu S
    Water Sci Technol; 2010; 61(3):729-35. PubMed ID: 20150710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competitive migration behaviors of multiple ions and their impacts on ion-exchange resin packed microbial desalination cell.
    Zuo K; Yuan L; Wei J; Liang P; Huang X
    Bioresour Technol; 2013 Oct; 146():637-642. PubMed ID: 23982060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective recovery of Cr and Cu in leachate from chromated copper arsenate treated wood using chelating and acidic ion exchange resins.
    Janin A; Blais JF; Mercier G; Drogui P
    J Hazard Mater; 2009 Sep; 169(1-3):1099-105. PubMed ID: 19446391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diclofenac removal in urine using strong-base anion exchange polymer resins.
    Landry KA; Boyer TH
    Water Res; 2013 Nov; 47(17):6432-44. PubMed ID: 24029637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The binding affinity of uncharged aromatic solutes for negatively charged resins is enhanced by cations via cation-π interactions: The case of sodium ion and arginine.
    Hirano A; Iwashita K; Ura T; Sakuraba S; Shiraki K; Arakawa T; Kameda T
    J Chromatogr A; 2019 Jun; 1595():97-107. PubMed ID: 30833023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An evaluation of a hybrid ion exchange electrodialysis process in the recovery of heavy metals from simulated dilute industrial wastewater.
    Mahmoud A; Hoadley AF
    Water Res; 2012 Jun; 46(10):3364-76. PubMed ID: 22503588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An innovative compound bed of EDI device with enhancing ion-exchange resins regeneration efficiency.
    Chen X; Wang L; Wan Z; Sun W; Yang Z; Jin J; Liu G
    Water Sci Technol; 2021 May; 83(10):2549-2559. PubMed ID: 34032630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavior of Embedded Cation-Exchange Particles in a DC Electric Field.
    Vobecká L; Belloň T; Slouka Z
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31336637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromium removal from tannery wastewaters with a strong cation exchange resin and species analysis of chromium by MINEQL+ .
    Kocaoba S; Cetin G; Akcin G
    Sci Rep; 2022 Jun; 12(1):9618. PubMed ID: 35688864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilization of Electrodeionization for Lithium Removal.
    Demir G; Mert AN; Arar Ö
    ACS Omega; 2023 May; 8(20):17583-17590. PubMed ID: 37251165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low energy consumption electrically regenerated ion-exchange for water desalination.
    He S; Zhang X; Xia X; Wang C; Xiang S
    Water Sci Technol; 2020 Oct; 82(8):1710-1719. PubMed ID: 33107864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH Transitions in ion-exchange systems: role in the development of a cation-exchange process for a recombinant protein.
    Ghose S; McNerney TM; Hubbard B
    Biotechnol Prog; 2002; 18(3):530-7. PubMed ID: 12052070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microscale electrodeionization: In situ concentration profiling and flow visualization.
    Park S; Kwak R
    Water Res; 2020 Mar; 170():115310. PubMed ID: 31770648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of resin particle size on the rate of ion release: interactions in mixed bed systems.
    Torrado A; Valiente M
    Anal Bioanal Chem; 2004 Jan; 378(1):205-13. PubMed ID: 14513192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent breakthroughs on the development of electrodeionization systems for toxic pollutants removal from water environment.
    Vinayagam V; Kishor Kumar NK; Palani KN; Ganesh S; Kushwaha OS; Pugazhendhi A
    Environ Res; 2024 Jan; 241():117549. PubMed ID: 37931737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theorization on ion-exchange equilibria: activity of species in 2-D phases.
    Tamura H
    J Colloid Interface Sci; 2004 Nov; 279(1):1-22. PubMed ID: 15380407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.