These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33435593)

  • 1. Advanced G-MPS-PMMA Bone Cements: Influence of Graphene Silanisation on Fatigue Performance, Thermal Properties and Biocompatibility.
    Paz E; Ballesteros Y; Abenojar J; Dunne N; Del Real JC
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33435593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene and graphene oxide functionalisation with silanes for advanced dispersion and reinforcement of PMMA-based bone cements.
    Paz E; Ballesteros Y; Forriol F; Dunne NJ; Del Real JC
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109946. PubMed ID: 31499982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene Oxide and Graphene Reinforced PMMA Bone Cements: Evaluation of Thermal Properties and Biocompatibility.
    Paz E; Ballesteros Y; Abenojar J; Del Real JC; Dunne NJ
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31561521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alternative radiopacifiers for polymethyl methacrylate bone cements: Silane-treated anatase titanium dioxide and yttria-stabilised zirconium dioxide.
    Ayre WN; Scully N; Elford C; Evans BA; Rowe W; Rowlands J; Mitha R; Malpas P; Manti P; Holt C; Morgan-Jones R; Birchall JC; Denyer SP; Evans SL
    J Biomater Appl; 2021 May; 35(10):1235-1252. PubMed ID: 33573445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene oxide versus graphene for optimisation of PMMA bone cement for orthopaedic applications.
    Paz E; Forriol F; Del Real JC; Dunne N
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1003-1011. PubMed ID: 28531971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of surface modification of graphene oxide with a reactive silane coupling agent on the mechanical properties and biocompatibility of acrylic bone cements.
    Ayora-Gutiérrez G; Abreu-Rejón AD; May-Pat A; Guerrero-Bermea C; Fernández-Escamilla VV; Rodríguez-Fuentes N; Cervantes-Uc JM; Uribe-Calderon JA
    J Biomater Sci Polym Ed; 2024 Feb; 35(3):345-363. PubMed ID: 38113176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-vitro biocompatibility, bioactivity, and mechanical strength of PMMA-PCL polymer containing fluorapatite and graphene oxide bone cements.
    Pahlevanzadeh F; Bakhsheshi-Rad HR; Hamzah E
    J Mech Behav Biomed Mater; 2018 Jun; 82():257-267. PubMed ID: 29627737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface and chemical properties of surface-modified UHMWPE powder and mechanical and thermal properties of it impregnated PMMA bone cement, III: effect of various ratios of initiator/inhibitor on the surface modification of UHMWPE powder.
    Yang DH; Yoon GH; Kim SH; Rhee JM; Kim YS; Khang G
    J Biomater Sci Polym Ed; 2005; 16(9):1121-38. PubMed ID: 16231603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporation of chitosan/graphene oxide nanocomposite in to the PMMA bone cement: Physical, mechanical and biological evaluation.
    Tavakoli M; Bakhtiari SSE; Karbasi S
    Int J Biol Macromol; 2020 Apr; 149():783-793. PubMed ID: 32014476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compressive fatigue properties of commercially available standard and low-modulus acrylic bone cements intended for vertebroplasty.
    Robo C; Öhman-Mägi C; Persson C
    J Mech Behav Biomed Mater; 2018 Jun; 82():70-76. PubMed ID: 29571115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical evaluation of an injectable calcium phosphate cement for vertebroplasty.
    Lim TH; Brebach GT; Renner SM; Kim WJ; Kim JG; Lee RE; Andersson GB; An HS
    Spine (Phila Pa 1976); 2002 Jun; 27(12):1297-302. PubMed ID: 12065977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silanized graphene oxide as a reinforcing agent for acrylic bone cements: physicochemical, mechanical and biological characterization.
    Levenez B; Gil-Cortes T; Rodríguez-Fuentes N; Jiménez JE; Herrera-Kao W; Loría-Bastarrachea MI; May-Pat A; Guerrero-Bermea C; Uribe-Calderón J; Cervantes-Uc JM
    J Biomater Sci Polym Ed; 2021 Sep; 32(13):1736-1753. PubMed ID: 34092190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification and evaluation of diatrizoate sodium containing polymethyl methacrylate bone cement.
    Han J; Zheng X; Liu J; Wang Y; Cui Z; Wu S; Liang Y; Zhu S; Ge X; Li Z
    J Biomater Appl; 2023 Feb; 37(7):1300-1314. PubMed ID: 36607821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term mechanical properties of a novel low-modulus bone cement for the treatment of osteoporotic vertebral compression fractures.
    Robo C; Öhman-Mägi C; Persson C
    J Mech Behav Biomed Mater; 2021 Jun; 118():104437. PubMed ID: 33706086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioactive polymethyl methacrylate-based bone cement: comparison of glass beads, apatite- and wollastonite-containing glass-ceramic, and hydroxyapatite fillers on mechanical and biological properties.
    Shinzato S; Kobayashi M; Mousa WF; Kamimura M; Neo M; Kitamura Y; Kokubo T; Nakamura T
    J Biomed Mater Res; 2000 Aug; 51(2):258-72. PubMed ID: 10825226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CNT and rGO reinforced PMMA based bone cement for fixation of load bearing implants: Mechanical property and biological response.
    Pahlevanzadeh F; Bakhsheshi-Rad HR; Kharaziha M; Kasiri-Asgarani M; Omidi M; Razzaghi M; Ismail AF; Sharif S; RamaKrishna S; Berto F
    J Mech Behav Biomed Mater; 2021 Apr; 116():104320. PubMed ID: 33571842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical and mechanical properties of PMMA bone cement reinforced with nano-sized titania fibers.
    Khaled SM; Charpentier PA; Rizkalla AS
    J Biomater Appl; 2011 Feb; 25(6):515-37. PubMed ID: 20207779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carboxyl functionalised MWCNT/polymethyl methacrylate bone cement for orthopaedic applications.
    Ormsby RW; Modreanu M; Mitchell CA; Dunne NJ
    J Biomater Appl; 2014 Aug; 29(2):209-221. PubMed ID: 24487131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporation of multiwalled carbon nanotubes to acrylic based bone cements: effects on mechanical and thermal properties.
    Ormsby R; McNally T; Mitchell C; Dunne N
    J Mech Behav Biomed Mater; 2010 Feb; 3(2):136-45. PubMed ID: 20129413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene oxide versus functionalized carbon nanotubes as a reinforcing agent in a PMMA/HA bone cement.
    Gonçalves G; Cruz SM; Ramalho A; Grácio J; Marques PA
    Nanoscale; 2012 Apr; 4(9):2937-45. PubMed ID: 22499394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.