BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 33435667)

  • 1. Optical Micro/Nanofiber-Enabled Compact Tactile Sensor for Hardness Discrimination.
    Tang Y; Liu H; Pan J; Zhang Z; Xu Y; Yao N; Zhang L; Tong L
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4560-4566. PubMed ID: 33435667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From Dual-Mode Triboelectric Nanogenerator to Smart Tactile Sensor: A Multiplexing Design.
    Li T; Zou J; Xing F; Zhang M; Cao X; Wang N; Wang ZL
    ACS Nano; 2017 Apr; 11(4):3950-3956. PubMed ID: 28332823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasensitive Linear Capacitive Pressure Sensor with Wrinkled Microstructures for Tactile Perception.
    Lv C; Tian C; Jiang J; Dang Y; Liu Y; Duan X; Li Q; Chen X; Xie M
    Adv Sci (Weinh); 2023 May; 10(14):e2206807. PubMed ID: 36922735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Variable-Impedance Tactile Sensor With Online Performance Tuning for Tissue Hardness Palpation in Robot-Assisted Minimally Invasive Surgery.
    Ju F; Yun Y; Zhang Z; Wang Y; Wang Y; Zhang L; Chen B
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2142-2145. PubMed ID: 30440827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Polymeric Piezoelectric Tactile Sensor Fabricated by 3D Printing and Laser Micromachining for Hardness Differentiation during Palpation.
    Ge C; Cretu E
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Innovative optical microsystem for static and dynamic tissue diagnosis in minimally invasive surgical operations.
    Ahmadi R; Packirisamy M; Dargahi J
    J Biomed Opt; 2012 Aug; 17(8):081416. PubMed ID: 23224177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high-resolution, ultrabroad-range and sensitive capacitive tactile sensor based on a CNT/PDMS composite for robotic hands.
    Fu X; Zhang J; Xiao J; Kang Y; Yu L; Jiang C; Pan Y; Dong H; Gao S; Wang Y
    Nanoscale; 2021 Nov; 13(44):18780-18788. PubMed ID: 34750598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viscoelastic modeling of the contact interaction between a tactile sensor and an atrial tissue.
    Shen JJ; Kalantari M; Kovecses J; Angeles J; Dargahi J
    IEEE Trans Biomed Eng; 2012 Jun; 59(6):1727-38. PubMed ID: 22481811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Core-sheath nanofiber yarn for textile pressure sensor with high pressure sensitivity and spatial tactile acuity.
    Qi K; Wang H; You X; Tao X; Li M; Zhou Y; Zhang Y; He J; Shao W; Cui S
    J Colloid Interface Sci; 2020 Mar; 561():93-103. PubMed ID: 31812870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of force reflection with tactile sensing for minimally invasive robotics-assisted tumor localization.
    Talasaz A; Patel RV
    IEEE Trans Haptics; 2013; 6(2):217-28. PubMed ID: 24808305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A remote palpation instrument for laparoscopic surgery: design and performance.
    Ottermo MV; Stavdahl Ø; Johansen TA
    Minim Invasive Ther Allied Technol; 2009; 18(5):259-72. PubMed ID: 19711224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of exploratory conditions in bio-inspired tactile sensing of single topogical features.
    Candelier R; Prevost A; Debrégeas G
    Sensors (Basel); 2011; 11(8):7934-53. PubMed ID: 22164054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new approach for an ultrasensitive tactile sensor covering an ultrawide pressure range based on the hierarchical pressure-peak effect.
    Wu C; Zhang T; Zhang J; Huang J; Tang X; Zhou T; Rong Y; Huang Y; Shi S; Zeng D
    Nanoscale Horiz; 2020 Mar; 5(3):541-552. PubMed ID: 32118233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical palpation: optical coherence tomography-based tactile imaging using a compliant sensor.
    Kennedy KM; Es'haghian S; Chin L; McLaughlin RA; Sampson DD; Kennedy BF
    Opt Lett; 2014 May; 39(10):3014-7. PubMed ID: 24978261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a real-time tactile sensing system for brain tumor diagnosis.
    Tanaka Y; Yu Q; Doumoto K; Sano A; Hayashi Y; Fujii M; Kajita Y; Mizuno M; Wakabayashi T; Fujimoto H
    Int J Comput Assist Radiol Surg; 2010 Jul; 5(4):359-67. PubMed ID: 20414734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using 3D Convolutional Neural Networks for Tactile Object Recognition with Robotic Palpation.
    Pastor F; Gandarias JM; García-Cerezo AJ; Gómez-de-Gabriel JM
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible tactile sensor using the reversible deformation of poly(3-hexylthiophene) nanofiber assemblies.
    Gao Q; Meguro H; Okamoto S; Kimura M
    Langmuir; 2012 Dec; 28(51):17593-6. PubMed ID: 23210599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soft Biomimetic Fiber-Optic Tactile Sensors Capable of Discriminating Temperature and Pressure.
    Shang C; Fu B; Tuo J; Guo X; Li Z; Wang Z; Xu L; Guo J
    ACS Appl Mater Interfaces; 2023 Nov; 15(46):53264-53272. PubMed ID: 37934693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adjustable Compliance Soft Sensor via an Elastically Inflatable Fluidic Dome.
    Zhang X; Kow J; Jones D; de Boer G; Ghanbari A; Serjouei A; Culmer P; Alazmani A
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33799641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stretchable Array of Highly Sensitive Pressure Sensors Consisting of Polyaniline Nanofibers and Au-Coated Polydimethylsiloxane Micropillars.
    Park H; Jeong YR; Yun J; Hong SY; Jin S; Lee SJ; Zi G; Ha JS
    ACS Nano; 2015 Oct; 9(10):9974-85. PubMed ID: 26381467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.