These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33435683)

  • 21. A novel efficient deoxygenation process for N-heteroarene N-oxides.
    Bjørsvik HR; Gambarotti C; Jensen VR; González RR
    J Org Chem; 2005 Apr; 70(8):3218-24. PubMed ID: 15822984
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hafnium(IV) Chloride Catalyzes Highly Efficient Acetalization of Carbonyl Compounds.
    Bonilla-Landa I; López-Hernández E; Barrera-Méndez F; Salas NC; Olivares-Romero JL
    Curr Org Synth; 2019; 16(6):913-920. PubMed ID: 31984912
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photoredox-catalyzed hydrosulfonylation reaction of electron-deficient alkenes with substituted Hantzsch esters and sulfur dioxide.
    Wang X; Yang M; Xie W; Fan X; Wu J
    Chem Commun (Camb); 2019 May; 55(43):6010-6013. PubMed ID: 31062012
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Visible Light-Driven Minisci-Type Reaction with N-Hydroxyphthalimide Esters.
    Kammer LM; Rahman A; Opatz T
    Molecules; 2018 Mar; 23(4):. PubMed ID: 29584642
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hafnium trifluoromethanesulfonate (hafnium triflate) as a highly efficient catalyst for chemoselective thioacetalization and transthioacetalization of carbonyl compounds.
    Wu YC; Zhu J
    J Org Chem; 2008 Dec; 73(23):9522-4. PubMed ID: 18991383
    [TBL] [Abstract][Full Text] [Related]  

  • 26. General and selective deoxygenation by hydrogen using a reusable earth-abundant metal catalyst.
    Schwob T; Kunnas P; de Jonge N; Papp C; Steinrück HP; Kempe R
    Sci Adv; 2019 Nov; 5(11):eaav3680. PubMed ID: 31763445
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly Chemoselective, Transition-Metal-Free Transamidation of Unactivated Amides and Direct Amidation of Alkyl Esters by N-C/O-C Cleavage.
    Li G; Ji CL; Hong X; Szostak M
    J Am Chem Soc; 2019 Jul; 141(28):11161-11172. PubMed ID: 31203613
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mild catalytic deoxygenation of amides promoted by thorium metallocene.
    Saha S; Eisen MS
    Dalton Trans; 2020 Sep; 49(36):12835-12841. PubMed ID: 32901643
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemoselective conversion of α-unbranched aldehydes to amides, esters, and carboxylic acids by NHC-catalysis.
    Kuwano S; Harada S; Oriez R; Yamada K
    Chem Commun (Camb); 2012 Jan; 48(1):145-7. PubMed ID: 22064827
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metal-Free Deoxygenation of Amine N-Oxides: Synthetic and Mechanistic Studies.
    Lecroq W; Schleinitz J; Billoue M; Perfetto A; Gaumont AC; Lalevée J; Ciofini I; Grimaud L; Lakhdar S
    Chemphyschem; 2021 Jun; 22(12):1237-1242. PubMed ID: 33971075
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transition-Metal-Free and Visible-Light-Mediated Desulfonylation and Dehalogenation Reactions: Hantzsch Ester Anion as Electron and Hydrogen Atom Donor.
    Heredia MD; Guerra WD; Barolo SM; Fornasier SJ; Rossi RA; Budén ME
    J Org Chem; 2020 Nov; 85(21):13481-13494. PubMed ID: 32893628
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A mild chemoselective Ru-catalyzed reduction of alkynes, ketones, and nitro compounds.
    Schabel T; Belger C; Plietker B
    Org Lett; 2013 Jun; 15(11):2858-61. PubMed ID: 23713474
    [TBL] [Abstract][Full Text] [Related]  

  • 33. When Light Meets Nitrogen-Centered Radicals: From Reagents to Catalysts.
    Yu XY; Zhao QQ; Chen J; Xiao WJ; Chen JR
    Acc Chem Res; 2020 May; 53(5):1066-1083. PubMed ID: 32286794
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deoxygenation reactions in organic synthesis catalyzed by dioxomolybdenum(VI) complexes.
    Suárez-Pantiga S; Sanz R
    Org Biomol Chem; 2021 Dec; 19(48):10472-10492. PubMed ID: 34816863
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Substituted Hantzsch esters as radical reservoirs with the insertion of sulfur dioxide under photoredox catalysis.
    Wang X; Li H; Qiu G; Wu J
    Chem Commun (Camb); 2019 Feb; 55(14):2062-2065. PubMed ID: 30688960
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A green chemistry approach to a more efficient asymmetric catalyst: solvent-free and highly concentrated alkyl additions to ketones.
    Jeon SJ; Li H; Walsh PJ
    J Am Chem Soc; 2005 Nov; 127(47):16416-25. PubMed ID: 16305227
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Manganese-Mediated Direct Functionalization of Hantzsch Esters with Alkyl Iodides via an Aromatization-Dearomatization Strategy.
    Liu XG; Dong CS; Li F; Zhang B
    Org Lett; 2021 May; 23(10):4002-4007. PubMed ID: 33978430
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visible Light Mediated Photoredox Catalytic Arylation Reactions.
    Ghosh I; Marzo L; Das A; Shaikh R; König B
    Acc Chem Res; 2016 Aug; 49(8):1566-77. PubMed ID: 27482835
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Iodine-Promoted Construction of Polysubstituted 2,3-Dihydropyrroles from Chalcones and β-Enamine Ketones (Esters).
    Li Y; Xu H; Xing M; Huang F; Jia J; Gao J
    Org Lett; 2015 Aug; 17(15):3690-3. PubMed ID: 26176324
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Radical alkylation of para-quinone methides with 4-substituted Hantzsch esters/nitriles via organic photoredox catalysis.
    Wu QY; Min QQ; Ao GZ; Liu F
    Org Biomol Chem; 2018 Sep; 16(35):6391-6394. PubMed ID: 30141823
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.