These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 33435686)

  • 1. Halide Perovskite Semiconductor Lasers: Materials, Cavity Design, and Low Threshold.
    Zhang Q; Shang Q; Su R; Do TTH; Xiong Q
    Nano Lett; 2021 Mar; 21(5):1903-1914. PubMed ID: 33435686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Making and Breaking of Lead Halide Perovskites.
    Manser JS; Saidaminov MI; Christians JA; Bakr OM; Kamat PV
    Acc Chem Res; 2016 Feb; 49(2):330-8. PubMed ID: 26789596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Materials chemistry and engineering in metal halide perovskite lasers.
    Dong H; Zhang C; Liu X; Yao J; Zhao YS
    Chem Soc Rev; 2020 Feb; 49(3):951-982. PubMed ID: 31960011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the Exciton-Polariton in a Continuous-Wave Optically Pumped CsPbBr
    Shang Q; Li M; Zhao L; Chen D; Zhang S; Chen S; Gao P; Shen C; Xing J; Xing G; Shen B; Liu X; Zhang Q
    Nano Lett; 2020 Sep; 20(9):6636-6643. PubMed ID: 32786951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Review on Organic-Inorganic Halide Perovskite Photodetectors: Device Engineering and Fundamental Physics.
    Ahmadi M; Wu T; Hu B
    Adv Mater; 2017 Nov; 29(41):. PubMed ID: 28910505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic-inorganic perovskite plasmonic nanowire lasers with a low threshold and a good thermal stability.
    Yu H; Ren K; Wu Q; Wang J; Lin J; Wang Z; Xu J; Oulton RF; Qu S; Jin P
    Nanoscale; 2016 Dec; 8(47):19536-19540. PubMed ID: 27878188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monolithically Integrated Perovskite Semiconductor Lasers on Silicon Photonic Chips by Scalable Top-Down Fabrication.
    Cegielski PJ; Giesecke AL; Neutzner S; Porschatis C; Gandini M; Schall D; Perini CAR; Bolten J; Suckow S; Kataria S; Chmielak B; Wahlbrink T; Petrozza A; Lemme MC
    Nano Lett; 2018 Nov; 18(11):6915-6923. PubMed ID: 30278610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Progress of Strong Exciton-Photon Coupling in Lead Halide Perovskites.
    Du W; Zhang S; Zhang Q; Liu X
    Adv Mater; 2019 Nov; 31(45):e1804894. PubMed ID: 30398690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Room-Temperature Continuous-Wave Operation of Organometal Halide Perovskite Lasers.
    Li Z; Moon J; Gharajeh A; Haroldson R; Hawkins R; Hu W; Zakhidov A; Gu Q
    ACS Nano; 2018 Nov; 12(11):10968-10976. PubMed ID: 30383358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perovskite random lasers: a tunable coherent light source for emerging applications.
    Kao TS; Hong YH; Hong KB; Lu TC
    Nanotechnology; 2021 Apr; 32(28):. PubMed ID: 33621968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Halide Perovskites for Nonlinear Optics.
    Xu J; Li X; Xiong J; Yuan C; Semin S; Rasing T; Bu XH
    Adv Mater; 2020 Jan; 32(3):e1806736. PubMed ID: 30883987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible Organometal-Halide Perovskite Lasers for Speckle Reduction in Imaging Projection.
    Wang YC; Li H; Hong YH; Hong KB; Chen FC; Hsu CH; Lee RK; Conti C; Kao TS; Lu TC
    ACS Nano; 2019 May; 13(5):5421-5429. PubMed ID: 31009199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perovskite Topological Lasers: A Brand New Combination.
    Wang L; Wu L; Pan Y
    Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controllable lasing performance in solution-processed organic-inorganic hybrid perovskites.
    Kao TS; Chou YH; Hong KB; Huang JF; Chou CH; Kuo HC; Chen FC; Lu TC
    Nanoscale; 2016 Nov; 8(43):18483-18488. PubMed ID: 27778006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wettability-Guided Screen Printing of Perovskite Microlaser Arrays for Current-Driven Displays.
    Wang K; Du Y; Liang J; Zhao J; Xu FF; Liu X; Zhang C; Yan Y; Zhao YS
    Adv Mater; 2020 Jul; 32(29):e2001999. PubMed ID: 32510677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lasing from lead halide perovskite semiconductor microcavity system.
    Wang J; Da P; Zhang Z; Luo S; Liao L; Sun Z; Shen X; Wu S; Zheng G; Chen Z
    Nanoscale; 2018 Jun; 10(22):10371-10376. PubMed ID: 29809212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perovskite Quantum Dot Lasing in a Gap-Plasmon Nanocavity with Ultralow Threshold.
    Hsieh YH; Hsu BW; Peng KN; Lee KW; Chu CW; Chang SW; Lin HW; Yen TJ; Lu YJ
    ACS Nano; 2020 Sep; 14(9):11670-11676. PubMed ID: 32701270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanowire Lasers of Formamidinium Lead Halide Perovskites and Their Stabilized Alloys with Improved Stability.
    Fu Y; Zhu H; Schrader AW; Liang D; Ding Q; Joshi P; Hwang L; Zhu XY; Jin S
    Nano Lett; 2016 Feb; 16(2):1000-8. PubMed ID: 26727024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A room temperature continuous-wave nanolaser using colloidal quantum wells.
    Yang Z; Pelton M; Fedin I; Talapin DV; Waks E
    Nat Commun; 2017 Jul; 8(1):143. PubMed ID: 28747633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward Continuous-Wave Pumped Metal Halide Perovskite Lasers: Strategies and Challenges.
    Zhao F; Ren A; Li P; Li Y; Wu J; Wang ZM
    ACS Nano; 2022 May; 16(5):7116-7143. PubMed ID: 35511058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.