These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 33436188)

  • 21. Hydrogen Bonding-Reinforced Hydrogel Electrolyte for Flexible, Robust, and All-in-One Supercapacitor with Excellent Low-Temperature Tolerance.
    Yu H; Rouelle N; Qiu A; Oh JA; Kempaiah DM; Whittle JD; Aakyiir M; Xing W; Ma J
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):37977-37985. PubMed ID: 32697569
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In Situ Growth of a High-Performance All-Solid-State Electrode for Flexible Supercapacitors Based on a PANI/CNT/EVA Composite.
    Guan X; Kong D; Huang Q; Cao L; Zhang P; Lin H; Lin Z; Yuan H
    Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960162
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultraflexible and tailorable all-solid-state supercapacitors using polyacrylamide-based hydrogel electrolyte with high ionic conductivity.
    Li H; Lv T; Li N; Yao Y; Liu K; Chen T
    Nanoscale; 2017 Nov; 9(46):18474-18481. PubMed ID: 29159361
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-Standing Hydrogels Composed of Conducting Polymers for All-Hydrogel-State Supercapacitors.
    Yang Z; Shi D; Dong W; Chen M
    Chemistry; 2020 Feb; 26(8):1846-1855. PubMed ID: 31808206
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flexible Supercapacitors Based on Graphene/Boron Nitride Nanosheets Electrodes and PVA/PEI Gel Electrolytes.
    Wang C; Hu K; Liu Y; Zhang MR; Wang Z; Li Z
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33919668
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robust double-network polyvinyl alcohol-polypyrrole hydrogels as high-performance electrodes for flexible supercapacitors.
    Li W; Chen W; Ma L; Yang J; Gao M; Wang K; Yu H; Lv R; Fu M
    J Colloid Interface Sci; 2023 Dec; 652(Pt A):540-548. PubMed ID: 37607416
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In Situ Formation of "Dimethyl Sulfoxide/Water-in-Salt"-Based Chitosan Hydrogel Electrolyte for Advanced All-Solid-State Supercapacitors.
    Wang H; Deng Y; Qiu J; Wu J; Zhang K; Shao J; Yan L
    ChemSusChem; 2021 Jan; 14(2):632-641. PubMed ID: 33047843
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation and Characterization of Self-Healing PVA-H
    D'Altri G; Yeasmin L; Di Matteo V; Scurti S; Giovagnoli A; Di Filippo MF; Gualandi I; Cassani MC; Caretti D; Panzavolta S; Scavetta E; Rea M; Ballarin B
    ACS Omega; 2024 Feb; 9(6):6391-6402. PubMed ID: 38371784
    [TBL] [Abstract][Full Text] [Related]  

  • 29. One-Pot Synthesis of a Double-Network Hydrogel Electrolyte with Extraordinarily Excellent Mechanical Properties for a Highly Compressible and Bendable Flexible Supercapacitor.
    Lin T; Shi M; Huang F; Peng J; Bai Q; Li J; Zhai M
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29684-29693. PubMed ID: 30088910
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Higher specific capacitance and compressibility nanocellulose based supercapacitor hydrogel electrode assembled by efficient impregnation.
    Wang X; Chen Y; Wu C
    Int J Biol Macromol; 2024 May; 267(Pt 2):131463. PubMed ID: 38599418
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication and Electrochemical Performance of PVA/CNT/PANI Flexible Films as Electrodes for Supercapacitors.
    Ben J; Song Z; Liu X; Lü W; Li X
    Nanoscale Res Lett; 2020 Jul; 15(1):151. PubMed ID: 32699960
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Powder Self-Healable Hydrogel Electrolyte for Flexible Hybrid Supercapacitors with High Energy Density and Sustainability.
    Huang H; Han L; Fu X; Wang Y; Yang Z; Pan L; Xu M
    Small; 2021 Mar; 17(10):e2006807. PubMed ID: 33590690
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-Healable, High-Strength Hydrogel Electrode for Flexible Sensors and Supercapacitors.
    Liu C; Wang X; Zhang HJ; You X; Yue O
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36240-36252. PubMed ID: 34309351
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-Healing and Highly Stretchable Hydrogel for Interfacial Compatible Flexible Paper-Based Micro-Supercapacitor.
    Wang Y; Shi Y; Gu Y; Xue P; Xu X
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33918031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Triblock Copolymer Design Leads to Robust Hybrid Hydrogels for High-Performance Flexible Supercapacitors.
    Zhang G; Chen Y; Deng Y; Wang C
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):36301-36310. PubMed ID: 28945071
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vertically Oriented and Interpenetrating CuSe Nanosheet Films with Open Channels for Flexible All-Solid-State Supercapacitors.
    Li L; Gong J; Liu C; Tian Y; Han M; Wang Q; Hong X; Ding Q; Zhu W; Bao J
    ACS Omega; 2017 Mar; 2(3):1089-1096. PubMed ID: 31457491
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly Flexible and Planar Supercapacitors Using Graphite Flakes/Polypyrrole in Polymer Lapping Film.
    Raj CJ; Kim BC; Cho WJ; Lee WG; Jung SD; Kim YH; Park SY; Yu KH
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13405-14. PubMed ID: 26010272
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flexible all-solid-state supercapacitors based on polyaniline orderly nanotubes array.
    Li H; Song J; Wang L; Feng X; Liu R; Zeng W; Huang Z; Ma Y; Wang L
    Nanoscale; 2017 Jan; 9(1):193-200. PubMed ID: 27906390
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cross-Linked Polyacrylic-Based Hydrogel Polymer Electrolytes for Flexible Supercapacitors.
    Shi L; Jiang P; Zhang P; Duan N; Liu Q; Qin C
    Polymers (Basel); 2024 Mar; 16(6):. PubMed ID: 38543405
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-Performance Flexible Solid-State Supercapacitor with an Extended Nanoregime Interface through in Situ Polymer Electrolyte Generation.
    Anothumakkool B; Torris A T A; Veeliyath S; Vijayakumar V; Badiger MV; Kurungot S
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1233-41. PubMed ID: 26697922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.