BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33436272)

  • 1. Reinforcement learning in surgery.
    Datta S; Li Y; Ruppert MM; Ren Y; Shickel B; Ozrazgat-Baslanti T; Rashidi P; Bihorac A
    Surgery; 2021 Jul; 170(1):329-332. PubMed ID: 33436272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decision analysis and reinforcement learning in surgical decision-making.
    Loftus TJ; Filiberto AC; Li Y; Balch J; Cook AC; Tighe PJ; Efron PA; Upchurch GR; Rashidi P; Li X; Bihorac A
    Surgery; 2020 Aug; 168(2):253-266. PubMed ID: 32540036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial Intelligence and Surgical Decision-making.
    Loftus TJ; Tighe PJ; Filiberto AC; Efron PA; Brakenridge SC; Mohr AM; Rashidi P; Upchurch GR; Bihorac A
    JAMA Surg; 2020 Feb; 155(2):148-158. PubMed ID: 31825465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inverse reinforcement learning for intelligent mechanical ventilation and sedative dosing in intensive care units.
    Yu C; Liu J; Zhao H
    BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):57. PubMed ID: 30961594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reinforcement learning in ophthalmology: potential applications and challenges to implementation.
    Nath S; Korot E; Fu DJ; Zhang G; Mishra K; Lee AY; Keane PA
    Lancet Digit Health; 2022 Sep; 4(9):e692-e697. PubMed ID: 35906132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Right population, right resources, right algorithm: Using machine learning efficiently and effectively in surgical systems where data are a limited resource.
    Eyler Dang L; Hubbard A; Dissak-Delon FN; Chichom Mefire A; Juillard C
    Surgery; 2021 Jul; 170(1):325-328. PubMed ID: 33413920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A qualitative systematic review of internal and external influences on shared decision-making in all health care settings.
    Truglio-Londrigan M; Slyer JT; Singleton JK; Worral P
    JBI Libr Syst Rev; 2012; 10(58):4633-4646. PubMed ID: 27820528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new computational account of cognitive control over reinforcement-based decision-making: Modeling of a probabilistic learning task.
    Zendehrouh S
    Neural Netw; 2015 Nov; 71():112-23. PubMed ID: 26339919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing clinical judgment with the MySurgeryRisk algorithm for preoperative risk assessment: A pilot usability study.
    Brennan M; Puri S; Ozrazgat-Baslanti T; Feng Z; Ruppert M; Hashemighouchani H; Momcilovic P; Li X; Wang DZ; Bihorac A
    Surgery; 2019 May; 165(5):1035-1045. PubMed ID: 30792011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiobjective optimization challenges in perioperative anesthesia: A review.
    Brennan M; Hagan JD; Giordano C; Loftus TJ; Price CE; Aytug H; Tighe PJ
    Surgery; 2021 Jul; 170(1):320-324. PubMed ID: 33334583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opportunities for machine learning to improve surgical ward safety.
    Loftus TJ; Tighe PJ; Filiberto AC; Balch J; Upchurch GR; Rashidi P; Bihorac A
    Am J Surg; 2020 Oct; 220(4):905-913. PubMed ID: 32127174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How we learn to make decisions: rapid propagation of reinforcement learning prediction errors in humans.
    Krigolson OE; Hassall CD; Handy TC
    J Cogn Neurosci; 2014 Mar; 26(3):635-44. PubMed ID: 24168216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential Biases in Machine Learning Algorithms Using Electronic Health Record Data.
    Gianfrancesco MA; Tamang S; Yazdany J; Schmajuk G
    JAMA Intern Med; 2018 Nov; 178(11):1544-1547. PubMed ID: 30128552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model-based reinforcement learning under concurrent schedules of reinforcement in rodents.
    Huh N; Jo S; Kim H; Sul JH; Jung MW
    Learn Mem; 2009 May; 16(5):315-23. PubMed ID: 19403794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reporting and Implementing Interventions Involving Machine Learning and Artificial Intelligence.
    Bates DW; Auerbach A; Schulam P; Wright A; Saria S
    Ann Intern Med; 2020 Jun; 172(11 Suppl):S137-S144. PubMed ID: 32479180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep reinforcement learning for automated radiation adaptation in lung cancer.
    Tseng HH; Luo Y; Cui S; Chien JT; Ten Haken RK; Naqa IE
    Med Phys; 2017 Dec; 44(12):6690-6705. PubMed ID: 29034482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review of Medical Decision Support and Machine-Learning Methods.
    Awaysheh A; Wilcke J; Elvinger F; Rees L; Fan W; Zimmerman KL
    Vet Pathol; 2019 Jul; 56(4):512-525. PubMed ID: 30866728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine Learning and Artificial Intelligence for Surgical Decision Making.
    Byerly S; Maurer LR; Mantero A; Naar L; An G; Kaafarani HMA
    Surg Infect (Larchmt); 2021 Aug; 22(6):626-634. PubMed ID: 34270361
    [No Abstract]   [Full Text] [Related]  

  • 19. Artificial intelligence framework for simulating clinical decision-making: a Markov decision process approach.
    Bennett CC; Hauser K
    Artif Intell Med; 2013 Jan; 57(1):9-19. PubMed ID: 23287490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nurses "Seeing Forest for the Trees" in the Age of Machine Learning: Using Nursing Knowledge to Improve Relevance and Performance.
    Kwon JY; Karim ME; Topaz M; Currie LM
    Comput Inform Nurs; 2019 Apr; 37(4):203-212. PubMed ID: 30688670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.