These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. From sporadic single genes to a broader transcriptomic approach: Insights into the formation of the biomineralized exoskeleton in decapod crustaceans. Shaked SA; Abehsera S; Levy T; Chalifa-Caspi V; Sagi A J Struct Biol; 2020 Nov; 212(2):107612. PubMed ID: 32896659 [TBL] [Abstract][Full Text] [Related]
23. Similar controls on calcification under ocean acidification across unrelated coral reef taxa. Comeau S; Cornwall CE; DeCarlo TM; Krieger E; McCulloch MT Glob Chang Biol; 2018 Oct; 24(10):4857-4868. PubMed ID: 29957854 [TBL] [Abstract][Full Text] [Related]
24. Emergent constraint on Arctic Ocean acidification in the twenty-first century. Terhaar J; Kwiatkowski L; Bopp L Nature; 2020 Jun; 582(7812):379-383. PubMed ID: 32555488 [TBL] [Abstract][Full Text] [Related]
25. Mineralogical Plasticity Acts as a Compensatory Mechanism to the Impacts of Ocean Acidification. Leung JY; Russell BD; Connell SD Environ Sci Technol; 2017 Mar; 51(5):2652-2659. PubMed ID: 28198181 [TBL] [Abstract][Full Text] [Related]
26. Ocean acidification reduces the crystallographic control in juvenile mussel shells. Fitzer SC; Cusack M; Phoenix VR; Kamenos NA J Struct Biol; 2014 Oct; 188(1):39-45. PubMed ID: 25180664 [TBL] [Abstract][Full Text] [Related]
27. Early pattern of calcification in the dorsal carapace of the blue crab, Callinectes sapidus. Dillaman R; Hequembourg S; Gay M J Morphol; 2005 Mar; 263(3):356-74. PubMed ID: 15688443 [TBL] [Abstract][Full Text] [Related]
28. Characterization of the Gene Repertoire and Environmentally Driven Expression Patterns in Tanner Crab (Chionoecetes bairdi). Crandall G; Jensen PC; White SJ; Roberts S Mar Biotechnol (NY); 2022 Mar; 24(1):216-225. PubMed ID: 35262806 [TBL] [Abstract][Full Text] [Related]
29. Molecular cloning of the crustacean hyperglycemic hormone (CHH) precursor from the X-organ and the identification of the neuropeptide from sinus gland of the Alaskan Tanner crab, Chionoecetes bairdi. Chung JS; Bembe S; Tamone S; Andrews E; Thomas H Gen Comp Endocrinol; 2009 Jun; 162(2):129-33. PubMed ID: 19332072 [TBL] [Abstract][Full Text] [Related]
30. The dorsal tergite cuticle of Seidl B; Reisecker C; Neues F; Campanaro A; Epple M; Hild S; Ziegler A J Struct Biol X; 2021; 5():100051. PubMed ID: 34337383 [TBL] [Abstract][Full Text] [Related]
31. Exoskeletal Trade-off between Claws and Carapace in Deep-sea Hydrothermal Vent Decapod Crustaceans. Cho B; Seo H; Hong J; Jang SJ; Kim T Integr Comp Biol; 2024 Jul; 64(1):80-91. PubMed ID: 38599630 [TBL] [Abstract][Full Text] [Related]
32. Biogeography of ocean acidification: Differential field performance of transplanted mussels to upwelling-driven variation in carbonate chemistry. Rose JM; Blanchette CA; Chan F; Gouhier TC; Raimondi PT; Sanford E; Menge BA PLoS One; 2020; 15(7):e0234075. PubMed ID: 32678823 [TBL] [Abstract][Full Text] [Related]
33. Fungus invasion of legs of the tanner crab, Chionoecetes bairdi. Hoskin GP Appl Environ Microbiol; 1983 Aug; 46(2):499-500. PubMed ID: 6625571 [TBL] [Abstract][Full Text] [Related]
34. High Magnesium Calcite and Dolomite composition carbonate in Amphiroa (Lithophyllaceae, Corallinales, Rhodophyta): further documentation of elevated Mg in Corallinales with climate change implications. Nash MC; Adey W; Harvey AS J Phycol; 2021 Apr; 57(2):496-509. PubMed ID: 33155284 [TBL] [Abstract][Full Text] [Related]
35. Ocean acidification affects marine chemical communication by changing structure and function of peptide signalling molecules. Roggatz CC; Lorch M; Hardege JD; Benoit DM Glob Chang Biol; 2016 Dec; 22(12):3914-3926. PubMed ID: 27353732 [TBL] [Abstract][Full Text] [Related]
36. Multiple phases of mg-calcite in crustose coralline algae suggest caution for temperature proxy and ocean acidification assessment: lessons from the ultrastructure and biomineralization in Phymatolithon (Rhodophyta, Corallinales) Nash MC; Adey W J Phycol; 2017 Oct; 53(5):970-984. PubMed ID: 28671731 [TBL] [Abstract][Full Text] [Related]
37. Could the acid-base status of Antarctic sea urchins indicate a better-than-expected resilience to near-future ocean acidification? Collard M; De Ridder C; David B; Dehairs F; Dubois P Glob Chang Biol; 2015 Feb; 21(2):605-17. PubMed ID: 25270127 [TBL] [Abstract][Full Text] [Related]
38. Exogenous 20-hydroxyecdysone induces epidermal carbonic anhydrase but inhibits exoskeletal calcification in the post-ecdysial blue crab, Callinectes sapidus. Ostrowski A; Zou E Gen Comp Endocrinol; 2018 Nov; 268():57-63. PubMed ID: 30056136 [TBL] [Abstract][Full Text] [Related]
39. A transporter that allows phosphate ions to control the polymorph of exoskeletal calcium carbonate biomineralization. Shaked SA; Abehsera S; Ziegler A; Bentov S; Manor R; Weil S; Ohana E; Eichler J; Aflalo ED; Sagi A Acta Biomater; 2024 Apr; 178():221-232. PubMed ID: 38428510 [TBL] [Abstract][Full Text] [Related]
40. Transgenerational acclimation to changes in ocean acidification in marine invertebrates. Lee YH; Jeong CB; Wang M; Hagiwara A; Lee JS Mar Pollut Bull; 2020 Apr; 153():111006. PubMed ID: 32275552 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]